> A framework for embedding molecular-level information in continuum-scale simulations of interfacial flows

APS 2015 11:01 AM-11:14 AM

By

Edward Smith,

In collaboration with Panagiotis Theodorakis, Erich Muller, Richard Craster and Omar Matar

Computational Fluid Dynamics (CFD)

z, w, H

x, u, L

• Incompressible Navier Stokes with the thin-film approximation.

$$\frac{\partial P}{\partial x} = \frac{\partial^2 u}{\partial z^2}$$
 $\frac{\partial P}{\partial z} = 0$ $\frac{\partial u}{\partial x} + \frac{\partial w}{\partial z} = 0$

• With boundary conditions

$$P = -\left(\frac{H}{L}\right)^{2} \frac{\partial^{2}h}{\partial x^{2}} \left(\sigma_{l} + \frac{1}{\Sigma_{l}}\right) \qquad \frac{\partial h}{\partial t} + u\frac{\partial h}{\partial x} = w \qquad \frac{\partial u}{\partial z} = \frac{\partial\sigma_{l}}{\partial x} \qquad z = h$$
$$u = \beta \frac{\partial u}{\partial z} \qquad \qquad w = 0 \qquad \qquad z = 0$$

- Surfactant modelled by advection-diffusion equations with empirical sorption processes - coupled to the dynamics through surface tension
- Contact line evolution is modelled by an empirical law

$$\frac{dx_c}{dt} = k(\theta - \theta_a)^n$$

• The angle coupled to surfactant absorption at the contact line is essential¹⁾

1) Thompson and Robbins (1989)

Coupled Droplet Spreading and MD

1) Thompson and Robbins (1989)

Coupled Droplet Spreading and MD

Molecular Dynamics

Discrete molecules in continuous space

- Molecular position evolves continuously in time
- Position and velocity from acceleration

$$egin{aligned} \dot{m{r}}_i &
ightarrow \dot{m{r}}_i \ \dot{m{r}}_i &
ightarrow m{r}_i(t) \end{aligned}$$

Acceleration obtained from forces

- Governed by Newton's law for an N-body system
- Point particles with pairwise interactions only

$$m_i \ddot{\boldsymbol{r}}_i = \mathbf{F}_i = \sum_{i \neq j}^N \boldsymbol{f}_{ij} \qquad \Phi(r_{ij}) = 4\epsilon \left[\left(\frac{\ell}{r_{ij}} \right)^{12} - \left(\frac{\ell}{r_{ij}} \right)^6 \right]$$

1)

• SAFT¹) using the γ -Mie²) potential $\Phi(r_{ij}) = 4C\epsilon_{ij} \left| \left(\frac{\ell_{ij}}{r_{ij}} \right)^{\lambda_r} - \left(\frac{\ell_{ij}}{r_{ij}} \right)^{\lambda_a} \right|$

Statistical Associated Field Theory

2) Müller & Jackson (2014)

Molecular Dynamics

A Better way of Getting the Contact Angle

Two phase version closer to experimental reality

- Two fluid phases and sliding molecular walls
- Simple test case to explore wall velocity vs contact line angle
- Non-Equilibrium Steady State

 $\mathcal{L}agrangian$

Cluster analysis and surface fitting

Determining the Contact angle

1) Snoeijer, Andreotti (2013) Annual Rev Fluid Mech 45:269–92

• Linear, Advancing and Receding angles

Contact angles vs sliding velocity

Streamlines

Droplet Breakdown

L. Wang, T. J. McCarthy (2013) Shear Distortion and Failure of Capillary Bridges. Wetting Information Beyond Contact Angle Analysis Langmuir 29, 7776–7781

Time Evolution of Contact Angle

• Plot evolution of various contact angles as a function of time

Building this into the Continuum Model

 Speed of contact line can be chosen from the molecular PDF with the appropriate speed in a simple fluid model

$$\frac{dx_c}{dt} = k(\theta - \theta_a)^n$$

• The more complex surfactant case requires simulations to be run dynamically for current surfactant concentration

Surfactant Spreading More Complex

- Surfactant concentration impacts contact angle
 - Includes mechanism for absorption at contact line

Conclusions and Future Aims

- Molecular dynamics provides a more detailed model of the contact line, multiple phases and wall-fluid interactions
- We want to combine both in a single model
 - For simple cases, probability density functions of molecular detail
 - For surfactant simulations the references solutions could be run on the fly based on surfactant concentration
 - Longer term domain decomposition using a detailed continuum model
- Choice of methodology depends on phenomenon of interest
 - But any molecular modelling represents an improvement on empirical models.

Acknowledgements

- Current work funded by EPSRC Grant number EP/J010502/1
- Working with Erich Muller, Richard Craster and Omar Matar

MD Simulation of Droplets

Low Wettability

• Intermediate Wettability

• High Wettability

Coupling Overview

1) Ren (2007), E et al (2003), Borg et al (2013)

2) O'Connell and Thompson (1995), Flekkøy at al (2000), Nie et al (2004), Hadjiconstantinou et al (1999), Delgado-Buscalioni and Coveney, (2003)

Table Lookup or Coefficients

MD parameter study stored in table and CFD uses data

Embedded Models

MD – embedded in a CFD simulation

Used for Non-Newtonian effects 1)

Domain Decomposition

MD –CFD linked along an interface

Local features e.g. contact line 2)

Droplet Modelling

• Thin film equations assumes a large length to height ratio

- Especially when only the contact line dynamics are of interest
 - Stretched grid and moving interface are complex to model

Coupling Overview

1) Ren (2007), E et al (2003), Borg et al (2013)

2) O'Connell and Thompson (1995), Flekkøy at al (2000), Nie et al (2004), Hadjiconstantinou et al (1999), Delgado-Buscalioni and Coveney, (2003)

Table Lookup or Coefficients

MD parameter study stored in table and CFD uses data

Embedded Models

MD – embedded in a CFD simulation

Used for Non-Newtonian effects ¹⁾

Domain Decomposition

MD – CFD linked along an interface

Local features e.g. contact line ²⁾