A Langevin model for the Dynamic Contact Angle Parameterised Using Molecular Dynamics

APS 2016 2:57 PM-3:10PM

By

Edward Smith, In collaboration with, Erich Muller, Richard Craster and Omar Matar

Determining the Contact angle

• Molecular simulation provides insight into contact line dynamics

Snoeijer, Andreotti (2013) Annual Rev Fluid Mech 45:269–92

Computational Fluid Dynamics (CFD)

1) G. Karapetsas, R. Craster & O. Matar, JFM, 2011

z, w, H

x, u, L

• Incompressible Navier Stokes with the thin-film approximation.

$$\frac{\partial P}{\partial x} = \frac{\partial^2 u}{\partial z^2} \qquad \qquad \frac{\partial P}{\partial z} = 0 \qquad \qquad \frac{\partial u}{\partial x} + \frac{\partial w}{\partial z} = 0$$

• With boundary conditions

$$P = -\left(\frac{H}{L}\right)^2 \frac{\partial^2 h}{\partial x^2} \sigma_l \qquad \qquad \frac{\partial h}{\partial t} + u \frac{\partial h}{\partial x} = w \qquad \qquad \frac{\partial u}{\partial z} = 0 \qquad \qquad z = h$$
$$u = \beta \frac{\partial u}{\partial z} \qquad \qquad w = 0 \qquad \qquad z = 0$$

• Contact line evolution is modelled by an empirical law

$$\frac{dx_c}{dt} = k(\langle \theta \rangle - \theta_a)^n$$

1) Thompson and Robbins (1989)

Coupled Droplet Spreading and MD

1) Thompson and Robbins (1989)

Coupled Droplet Spreading and MD

Molecular Dynamics

Discrete molecules in continuous space

- Molecular position evolves continuously in time
- Position and velocity from acceleration

$$egin{aligned} \dot{m{r}}_i &
ightarrow \dot{m{r}}_i \ \dot{m{r}}_i &
ightarrow m{r}_i(t) \end{aligned}$$

Acceleration obtained from forces

- Governed by Newton's law for an N-body system
- Point particles with pairwise interactions only

$$m_i \ddot{\boldsymbol{r}}_i = \mathbf{F}_i = \sum_{i \neq j}^N \boldsymbol{f}_{ij} \qquad \Phi(r_{ij}) = 4\epsilon \left[\left(\frac{\ell}{r_{ij}} \right)^{12} - \left(\frac{\ell}{r_{ij}} \right)^6 \right]$$

Molecular Dynamics

Two phase version closer to experimental reality

- Two fluid phases and sliding molecular walls
- Simple test case to explore wall velocity vs contact line angle
- Non-Equilibrium Steady State

 $\mathcal{L}agrangian$

Cluster analysis and surface fitting

Linear, Advancing, Receding

Streamlines

Droplet Breakdown

L. Wang, T. J. McCarthy (2013) Shear Distortion and Failure of Capillary Bridges. Wetting Information Beyond Contact Angle Analysis Langmuir 29, 7776–7781

Contact angles vs sliding velocity

Time Evolution of Contact Angle

• Plot evolution of various contact angles as a function of time

• Linear, Advancing and Receding angles

Building this into the Continuum Model

• Model the movement of the contact line as a torsional

• Torque $T = F \times L$ approximately equal to wall sliding

Building this into the Continuum Model

- In the limit overdamped limit we get the Langevin Equation $\dot{\theta} + \frac{k}{\Gamma} \left[\theta - \langle \theta \rangle\right] - \frac{1}{\Gamma} \xi(t) = 0 \text{ where } \langle \xi(t)\xi(t') \rangle = C\delta(t - t'),$
- Coefficients parameterised using
 - Standard deviation function of temperature but velocity independent
 - Autocorrelation roughly velocity and temperature independent.

Results of the model

- i) Advancing angle for stationary case
 - *ii)* Linear angle sliding at U=0.02
- *iii*) Linear
 angle sliding
 at U=0.0025
- Black lines Langevin model

Computational Fluid Dynamics (CFD)

1) G. Karapetsas, R. Craster & O. Matar, JFM, 2011

z, w, H

x, u, L

• Incompressible Navier Stokes with the thin-film approximation.

$$\frac{\partial P}{\partial x} = \frac{\partial^2 u}{\partial z^2} \qquad \qquad \frac{\partial P}{\partial z} = 0 \qquad \qquad \frac{\partial u}{\partial x} + \frac{\partial w}{\partial z} = 0$$

• With boundary conditions

$$P = -\left(\frac{H}{L}\right)^2 \frac{\partial^2 h}{\partial x^2} \sigma_l \qquad \frac{\partial h}{\partial t} + u \frac{\partial h}{\partial x} = w \qquad \frac{\partial u}{\partial z} = 0 \qquad z = h$$
$$u = \beta \frac{\partial u}{\partial z} \qquad w = 0 \qquad z = 0$$

• Contact line evolution is modelled by an empirical law

$$\frac{dx_c}{dt} = k(\langle \theta \rangle - \theta_a)^n$$

• Evolution of contact line includes molecular fluctuations

$$\theta^{t+1} = \theta^t - \frac{k\Delta t}{\Gamma} \left[\theta^t - \langle \theta \rangle \right] + \xi \frac{\sqrt{C\Delta t}}{\Gamma}$$

Molecular contact angle in continuum model

Application of this Work

Summary

- Molecular Dynamics (MD) is used to study the relationship between contact angle and wall sliding speed
- The mean contact angle and fluctuations are explored
- A Langevin model is be used to reproduce key MD detail
- Molecular detail can be incorporated into a CFD model using the Langevin equation, tuned using MD.