The Continuum

Multi-Scale Modelling IMSE

Part 1 9th November By Edward Smith

Introduction

Plan for the Continuum Part of the Course

- Where we are in the wider modelling hierarchy
- Understand the Continuum assumption
- Partial differential equations and numerical solutions
- More partial differential equations and numerical solutions
- Two dimensional vector fields
- The Navier-Stokes Equation
 - Assumptions that lead to it
 - Key terms and their meaning (with some extensions)
 - Simplifications and solutions
- Link to the molecular dynamics equations
- Numerical solutions to the Navier Stokes equation

Session 3

3

Session 2

Session 1

Aims

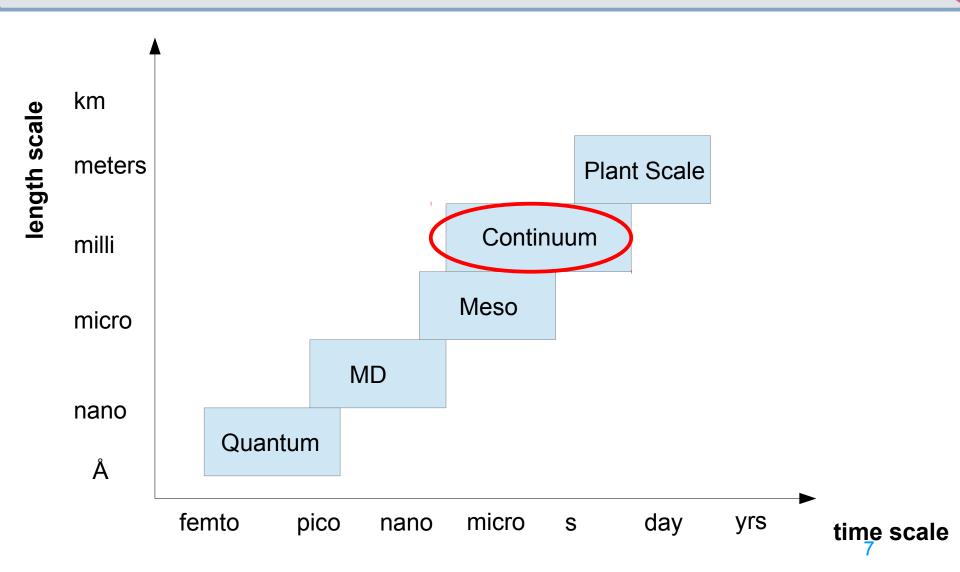
- By the end of the 3 part course you should be able to:
 - State the Continuum assumption, specifically for continuous fields and how this underpins fluid dynamics
 - Understand three dimensional fields, vector calculus and partial differential equations
 - Be able to solve basic differential equations numerically
 - State the Navier-Stokes Equation, key assumptions, the meaning of the terms and how to simplify and solve.
 - Understand how to treat the various terms in a numerical solutions to the Navier-Stokes equation
 - Understand where the continuum modelling fits into the hierarchy and links to the molecular and plant scales₄

Aims

- By the end of today's session you will have:
 - Seen what the Continuum assumption means and been shown that, crucially, it describes continuous fields
 - An understanding of fields and how to plot them
 - Been introduced to some simple ordinary and partial differential equations
 - Been shown how to solve basic differential equations numerically
 - Tried to solve them using either a programming language of your choice or Excel

Introduction

Scale Hierarchy



History of the Continuum vs Atomistic

Molecular/Atomistic

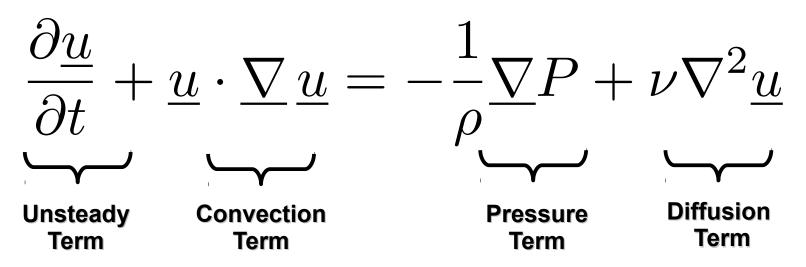
Continuum

Video of MD vs Continuum

https://www.youtube.com/watch?v=aQABqOkPXXA

The Navier-Stokes Equation

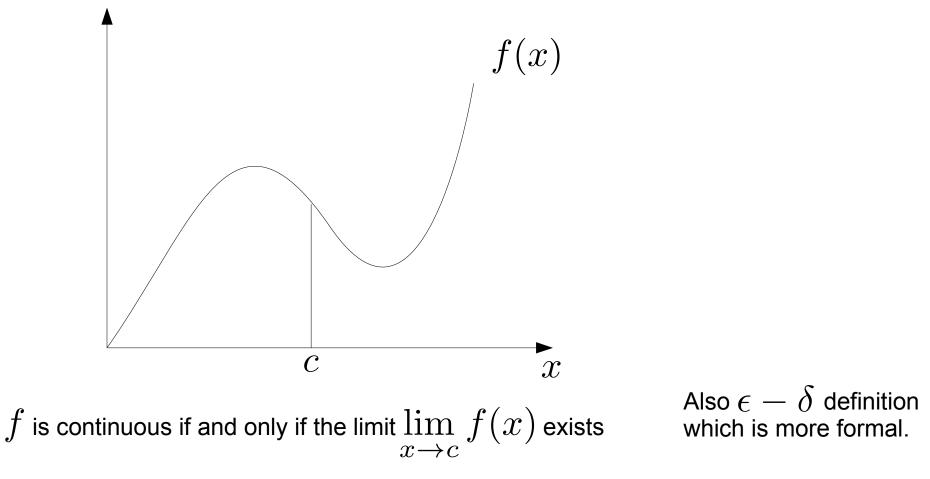
• Describes the flow of single phase Newtonian fluids



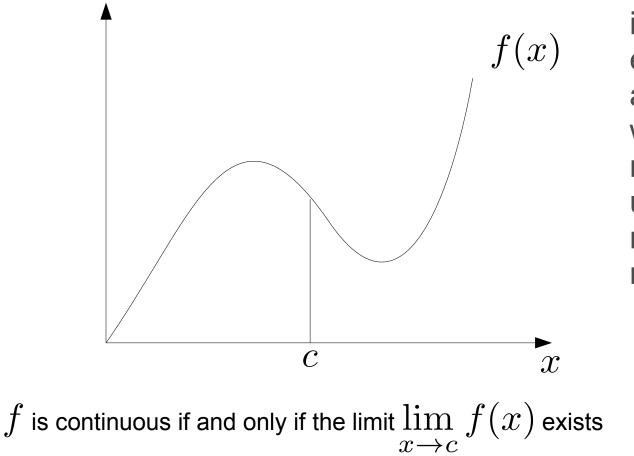
- Lots of complexity here, a non-linear partial differential equation for velocity and pressure we'll build up to it
- Apparently impossible to solve directly, complex to solve numerically and not proven to have existence and smoothness (Clay prize with \$1,000,000 reward)

The Continuum, Calculus and Differential Equations

Definition of a Continuous Function



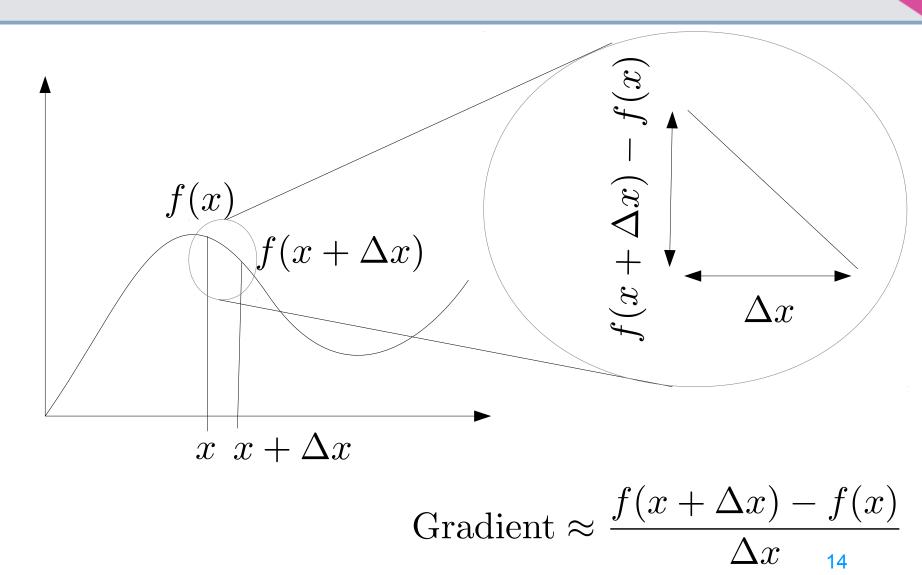
Definition of a Continuous Function



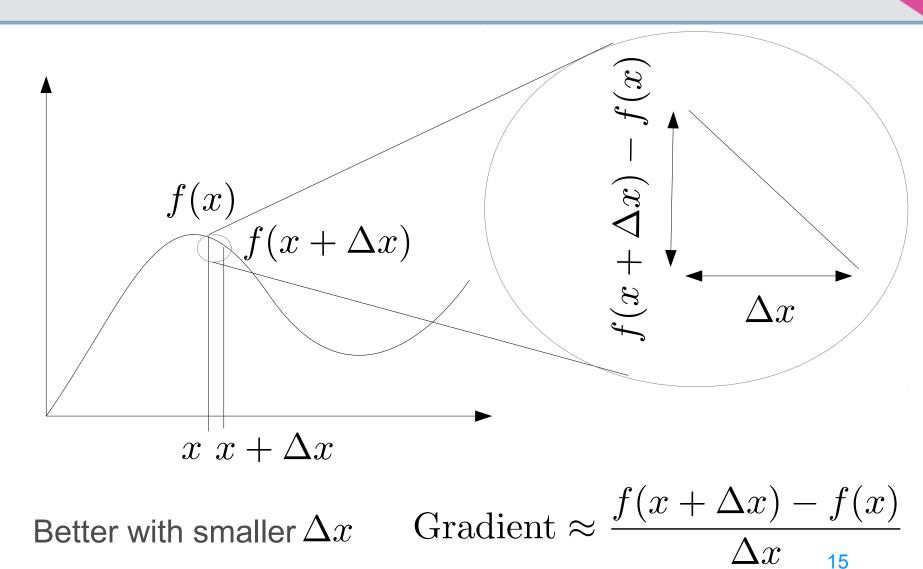
Note the continuum is a definition; essentially an assumption that works very well in most cases (and underpins the majority of applied mathematics)

Also $\epsilon-\delta$ definition which is more formal.

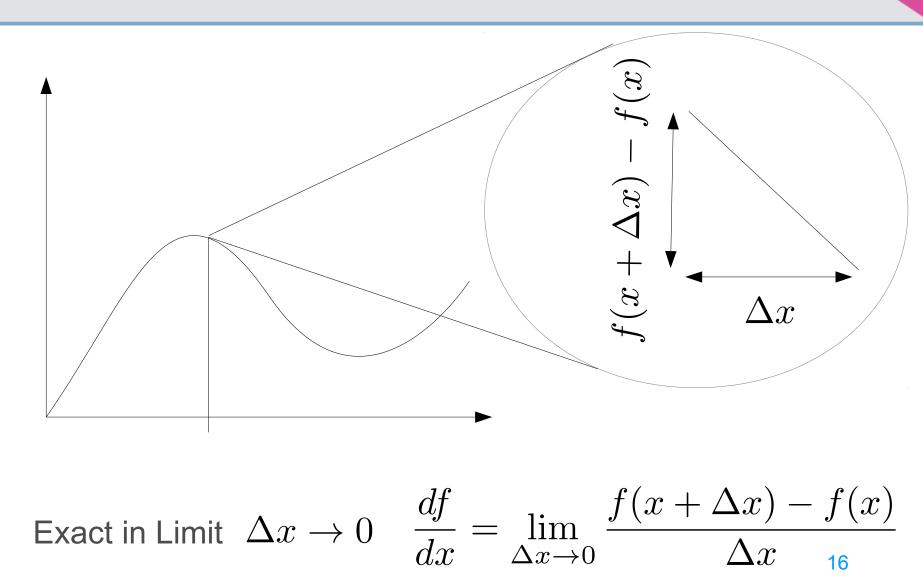
Definition of a Derivative



Definition of a Derivative



Definition of a Derivative



Differential Equations

• Equations which include derivatives are differential equations, e.g.

$$\frac{df}{dx} = 0 \qquad \qquad \frac{df}{dx} = ax + b \qquad \qquad \frac{d^2f}{dx^2} = 5$$

• These are the same as any other equation, for example the equation for a line or Newton's law

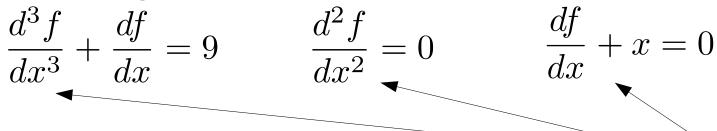
$$y = mx + c \qquad \qquad F = ma$$

• Which can also be written as differential equations

$$y = \frac{dy}{dx}x + c$$
 $F = m\frac{d^2x}{dt^2}$

Differential Equations

• Equations which include derivatives are differential equations, e.g.



- Order of equation is highest derivative, here 3, 2 and 1
- Equations can be linear or non-linear. Roughly speaking, any equation which contains a product of unknown function or it's derivatives (here f) is non-linear, e.g.

$$f\frac{d^2f}{dx^2} + x\frac{df}{dx} = 0 \qquad \frac{d^4f}{dx^4} + f^2 = 0 \qquad \left(\frac{df}{dx}\right)^2 + x^2 = 0$$

Differential Equations

• Differential equations are useful because they describe physics in the continuum, for example the Wave Equation

$$\frac{\partial u^2}{\partial t^2} = c^2 \nabla^2 u$$

• The Advection-Diffusion Equation (for some chemical concentration C, diffusing with coefficient D

$$\frac{\partial C}{\partial t} = \boldsymbol{\nabla} \cdot (D\boldsymbol{\nabla}C) - \boldsymbol{\nabla} \cdot (\underline{u}C)$$

• Even Newton's Law, which is continuous in time

1

$$m\frac{dx^2}{dt^2} = F$$

Solving Differential Equations

• Some differential equations, especially if they are linear, can be solved exactly. For example:

$$\frac{df}{dx} = a \qquad \qquad f(x) = ax + C_1$$

• This is integrated to give f as a function of x with an arbitrary constant of integration. Also for second order equations,

$$\frac{d^2f}{dx^2} = b \qquad \frac{df}{dx} = bx + C_2$$
$$f(x) = bx^2 + C_2x + C_3$$

 Most differential equations are too complex to solve directly, research typically focuses on numerical solutions

Numerical Solution to Differential Equations

• Instead we solve numerically, consider the definition of the derivative

$$\frac{df}{dx} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

If we make delta x small we can approximate the derivative by taking two points which are arbitrarily close

$$\frac{df}{dx} \approx \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$f(x) \quad f(x + \Delta x)$$

$$\overleftarrow{\Delta x}$$

21

Numerical Solution to Differential Equations

• First order derivatives

$$\frac{df}{dx} \approx \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

Second order derivatives

$$\frac{d^2f}{dx^2} \approx \frac{f(x + \Delta x) - 2f(x) + f(x - \Delta x)}{(\Delta x)^2}$$

• We can introduce short-hand notation for this

$$\frac{f(x + \Delta x) - f(x)}{\Delta x} \equiv \frac{f_{i+1} - f_i}{\Delta x}$$
$$\frac{f(x + \Delta x) - 2f(x) + f(x - \Delta x)}{(\Delta x)^2} \equiv \frac{f_{i+1} - 2f_i + f_{i-1}}{(\Delta x)^2}$$

Numerical Solution to Differential Equations

• First order derivatives

$$\frac{df}{dx} \approx \frac{f_{i+1} - f_i}{\Delta x}$$

Second order derivatives

$$\frac{d^2 f}{dx^2} \approx \frac{f_{i+1} - 2f_i + f_{i-1}}{(\Delta x)^2}$$

• How to write this as code, as an example we consider

for
$$\frac{df}{dx} = a$$
 and use $\frac{df}{dx} \approx \frac{f_{i+1} - f_i}{\Delta x}$

and rearrange to get i+1 value,

 $f_{i+1} = f_i + a\Delta x \quad \longrightarrow \quad f[i+1] = f[i] + a^* dx$

Numerical Solution to Differential Equations

• First order derivatives

$$\frac{df}{dx} \approx \frac{f_{i+1} - f_i}{\Delta x}$$

Second order derivatives

$$\frac{d^2 f}{dx^2} \approx \frac{f_{i+1} - 2f_i + f_{i-1}}{(\Delta x)^2}$$

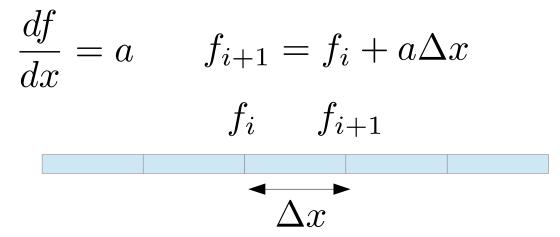
• How to write this as code (rearranged to get i+1 value)

$$\frac{df}{dx} = a \qquad f[i+1] = f[i] + a*dx$$
$$\frac{d^2f}{dx^2} = b \qquad f[i+1] = 2*f[i] - f[i-1] + a*dx$$

b*dx**2

Numerical Solution to Differential Equations

So if we know the value at f_i, we can get the value at f_{i+1} a small distance, delta x, away



- Once we know the value at f_{i+1} , we can get the value at at f_{i+2} , and so on f_i f_{i+1} f_{i+2}

Python vs MATLAB

%MATLAB
clear all
close all

x = linspace(0,2*pi,100); y = sin(x); z = cos(x); plot(x,y,'-r'); hold all plot(x,z,'-b') #python
from numpy import *
from matplotlib.pyplot import *

Python vs MATLAB

- Loop "for i in range(1, Nsteps-1)" where range(1, Nsteps-1) replace 1:Nsteps in MATLAB's "for i=1:Nsteps"
- Python uses zero indexing (arrays start from 0)
- Square brackets to access array elements, normal brackets for functions (e.g. range function here)
- Indentation used to define scope (four spaces here) no end statements needed after loop

```
for i in range(1,Nsteps-1):
```

```
#Comment with hash
f[i+1] = 2.*f[i] - f[i-1] + dt**2 * F
plot(x, 'bo')
```

show()

• Plots added to figure will only appear when show() called

Questions 1

1) Use the definition of the derivative $\frac{df}{dx} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$

2) Identify order of the following. Which are linear?

a)
$$\frac{d^3y}{dx^3} + (\frac{dy}{dx})^2 = 4$$
 b) $x^2 \frac{d^2y}{dx^2} + 3(y-x) = 5x \frac{dy}{dx}$ c) $\frac{dy}{dx} = \frac{y-x}{y+x}$

3) Integrate Newton's Law for constant acceleration,

$$\frac{dx^2}{dt^2} = -g$$
 with $x = 0$ and $\frac{dx}{dt} = v_0$ at $t = 0$

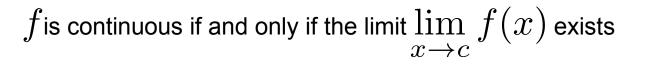
using initial conditions to replace integration constants. Solve numerically on a computer and compare results 4) Now solve $\frac{dx^2}{dt^2} = \left(\frac{1}{x} - g\right)$ with varying initial conditions. What do you notice?

Fields and Partial Differential Equations

Continuum Fields

- We use Newton's law assuming continuity in time and position (even in a discrete molecular system)
- The Continuum hypothesis refers to the continuous nature of fields in space. These are 2D or 3D continuous functions which evolve in time
- Assumes that we have so many particles it is a continuum.
- In practice, one meter cube of air has 10²⁵ molecules so works very well
- Although this also works down to smaller scales than would be expected...

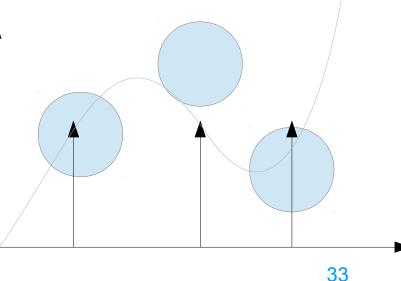
Continuum Fields



- When is this not true?
 - When the Molecular nature becomes apparent
 - Extreme events like shock waves
 - Discontinuities or near boundaries (especially contact line)
 - Fractal systems?
- How do we tell if valid
 - Knudsen number for gases

$$Kn = \frac{\lambda}{L}$$

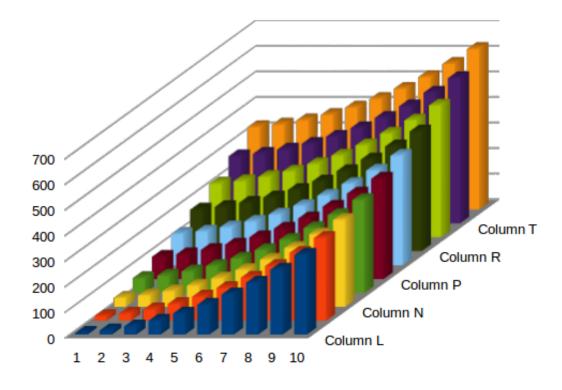
• No Similar metric for dense fluids (most cases of interest)



Example of a Field

• Consider an example 2D field described by an x-y polynomial

$$f(x,y) = ax^{2} + bx + cy^{2} + dy + exy + f$$



 Consider a grid of x and y values

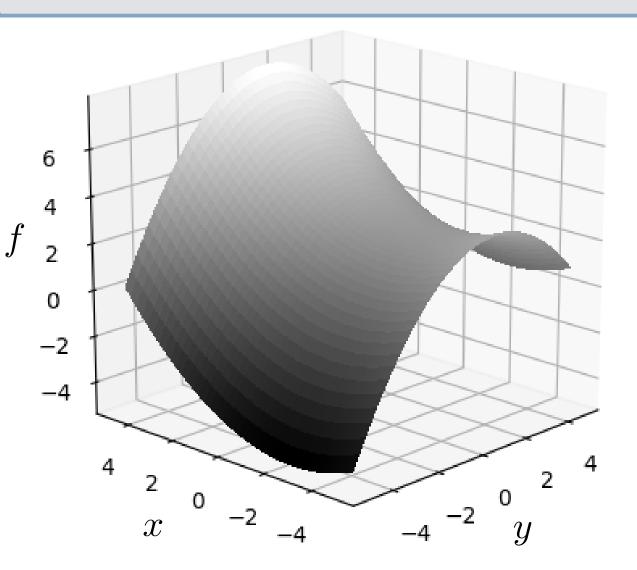
$$f = f(x, y)$$

• We plot a bar at each x or y location with the value there

Example of a Field

	Α	В	С	D	Ε	F	G	Н	1	J	K	L	М	N	0	P	Q	R	S	Т	U	V	
1	х											f											
2	1	2	3	4	5	6	7	8		9 10		7	18	35	58	87	122	163	210	263	322		
3	1	2	3	4	5	6	- 7	8		9 10		17	28	45	68	97	132	173	220	273	332		
4	1	2	3	4	5	6	7			9 10		33	44	61	84	113	148	189	236	289	348		
5	1	2	3	4	5	6	7	8		9 10		55	66	83	106	135	170	211	258	311	370		
6	1	2	3	4	5	6	7			9 10		83	94	111	134	163	198	239	286	339	398		
7	1	2	3	4	5	6	7			9 10		117	128	145	168	197	232	273	320	373	432		
8	1	2	3	4	5	6	7			9 10		157	168	185	208	237	272	313	360	413	472		
9	1	2	3	4	5	6	7			9 10		203	214	231	254	283	318	359	406	459	518		
10	1	2	3	4	5	6	7			9 10		255	266	283	306	335	370	411	458	511	570		
11	1	2	3	4	5	6	7	8		9 10		313	324	341	364	393	428	469	516	569	628		
12											f		.)	~ ~	2^{-1}	1	_		_	1		a.	ſ
	у		_	_	-	_					I (x, i	/) =	:aa	; +	- 0x		cy	+	uy -	-ex	y +	F
14	1	1	1	1	1	1	1			1 1		<u>ب</u> ۲			I		.	0	•	0	.	<i>.</i>	′
15	2	2	2	2	2	2	2			2 2													
16	3	3	3	3	3	3	3			3 3						/				-			
17	4	4	4	4	4	4	4			4 4													
18	5	5	5	5	5	5	5			55					/ /								
19	6	6	6	6	6	6	6			66					//							Column	n L
20	7	7	7	7	7	7	7	-		7 7				/ /								Columr	a M
21	8	8	8	8	8	8	8			88					/ /							Column	
22	9	9	9	9	9	9	9			99		700	//		/ /							Column	
23	10	10	10	10	10	10	10	10	1	0 10				/ /									
24												600	//	//								Column	
25		coefficients		s								500	//									Column	
26		a		3 2										/ /						Colu	umn T	Column	۱R
27		b					400		42						Column	n S							
28		С		3							30		//							Column R		Column	hТ
29		d	1																Colum	D		Columr	
30		е	0									200	/					-	Columi	1.12			
31		f	-2									100		00				Colu	mn N				
32																							
33												0	1.0					olumn L					
34													1 2	34	567	789	10						

Two Dimensions Fields (3D plot)



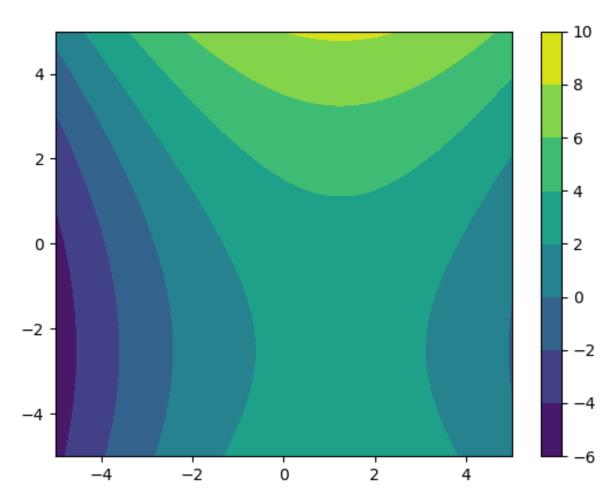
- Limit is a continuous function
- Here a function of two variables

$$f = f(x, y)$$

 As we move in either x or y direction the value of f changes

Two Dimensions Fields (2D plot)

• Contour plot



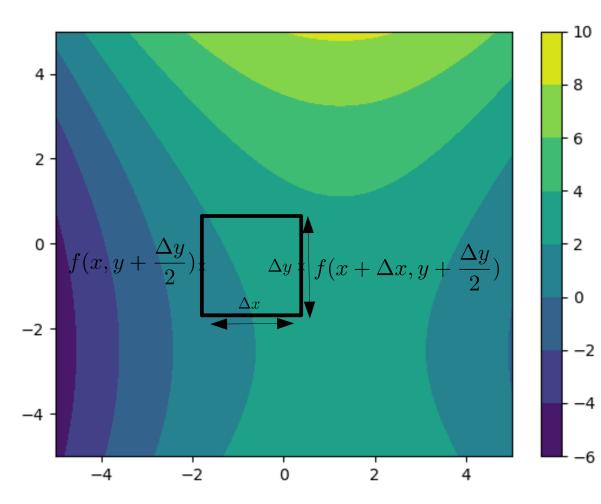
- Limit is a continuous function
- Here a function of two variables

$$f = f(x, y)$$

 As we move in either x or y direction the value of f changes

Two Dimensions Fields (2D plot)

• Contour plot

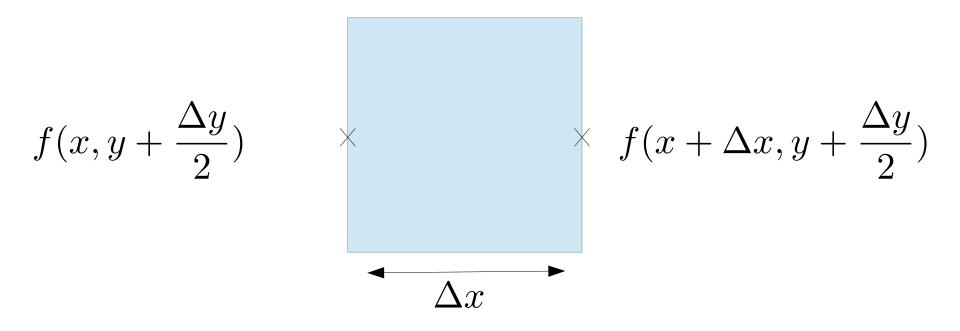


- Limit is a continuous function
- Here a function of two variables

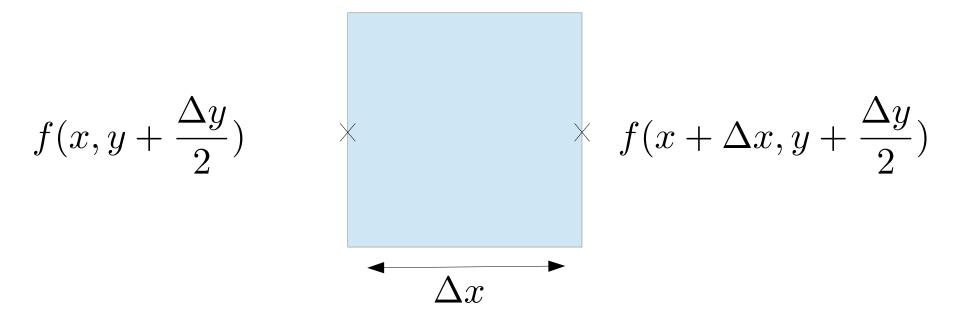
$$f = f(x, y)$$

 As we move in either x or y direction the value of f changes

Two Dimensions and Partial Derivatives



Two Dimensions and Partial Derivatives



• Note we have dropped the half Delta terms for simplicity

$$\frac{\partial f}{\partial x}|_{y \text{ constant}} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x}$$

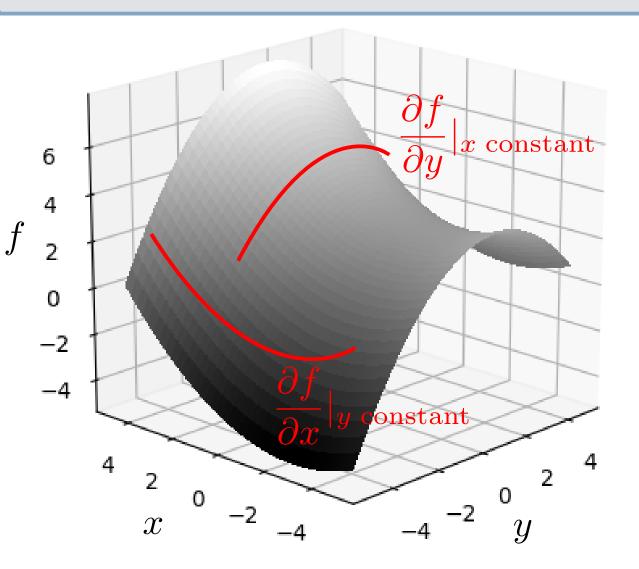
Two Dimensions and Partial Derivatives

$$f(x + \frac{\Delta x}{2}, y + \Delta y)$$

$$f(x + \frac{\Delta x}{2}, y)$$

Two Dimensions and Partial Derivatives

Two Dimensions and Partial Derivatives



 Consider a function of two variables

$$f = f(x, y)$$

 $\frac{\partial f}{\partial x}|_{y \text{ constant}}$ $\frac{\partial f}{\partial y}|_{x \text{ constant}}$

Example of a Field and it's Derivatives

• Consider an example field described by an x-y polynomial

$$f(x,y) = ax^{2} + bx + cy^{2} + dy + exy + f$$

• We can calculate the derivatives at any point

$$\frac{\partial f}{\partial x}|_{y \text{ constant}} = 2ax + b + ey \qquad \qquad \frac{\partial f^2}{\partial x^2}|_{y \text{ constant}} = 2a$$
$$\frac{\partial f}{\partial y}|_{x \text{ constant}} = 2cy + d + ex \qquad \qquad \frac{\partial f^2}{\partial y^2}|_{y \text{ constant}} = 2c$$

Example of a Field and it's Derivatives

• Consider an example field described by an x-y polynomial

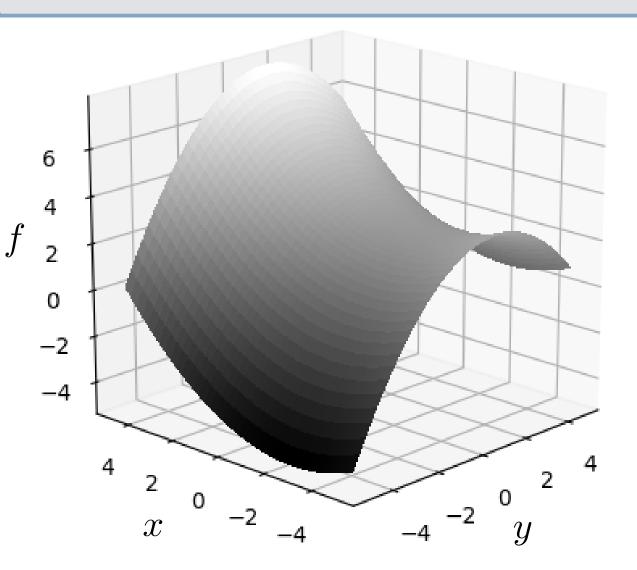
$$f(x,y) = ax^{2} + bx + cy^{2} + dy + exy + f$$

• We can also calculate the derivatives numerically (note the subscript notation is used again but in 2D with i and j)

$$\frac{\partial f}{\partial x} \approx \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x} \equiv \frac{f_{i+1,j} - f_{i,j}}{\Delta x}$$
$$\frac{\partial f}{\partial y} \approx \frac{f(x, y + \Delta y) - f(x, y)}{\Delta y} \equiv \frac{f_{i,j+1} - f_{i,j}}{\Delta y}$$

45

Plotting Fields (3D plot)



- Limit is a continuous function
- Here a function of two variables

$$f = f(x, y)$$

 As we move in either x or y direction the value of f changes

Plotting Fields (3D plot Code)

from mpl_toolkits.mplot3d import Axes3D
from matplotlib.pyplot import *
from numpy import *

#Constants

a = -0.2; b = 0.5; c=0.1; d=0.5; e=0.; f=3. Npoints = 50

#Define Domain

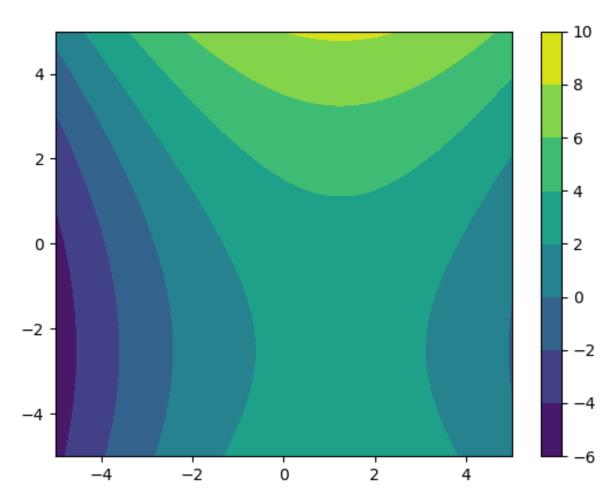
```
X = linspace(-5, 5, Npoints)
Y = linspace(-5, 5, Npoints)
X, Y = meshgrid(X, Y)
Z = a^XX^*2 + b^X + c^Y^*2 + d^Y + e^X^Y + f
```

#Plot 3D figure fig = figure() ax = fig.gca(projection='3d') surf = ax.plot_surface(X, Y, Z, cmap=cm.gray) fig.colorbar(surf)

```
show()
```

Plotting Fields (2D plot)

• Contour plot



- Limit is a continuous function
- Here a function of two variables

$$f = f(x, y)$$

 As we move in either x or y direction the value of f changes

Plotting Fields (2D plot Code)

from matplotlib.pyplot import *
from numpy import *

#Constants a = -0.2; b = 0.5; c=0.1; d=0.5; e=0.; f=3. Npoints = 50

```
#Define Domain
X = linspace(-5, 5, Npoints)
Y = linspace(-5, 5, Npoints)
X, Y = meshgrid(X, Y)
Z = a^XX^*2 + b^XX + c^YY^*2 + d^YY + e^XYY + f
```

```
#Plot 2D figure
contourf(X, Y, Z)
colorbar()
show()
```

Questions 2

- Plot the following field as a contour (Python/MATLAB/excel) $f(x,y) = \sin(2\pi x)\cos(2\pi y)$ for 0 < x < 1 and 0 < y < 1
- Evaluate partial derivatives in x and y and plot these fields

$$\frac{\partial f}{\partial x}|_{y \text{ constant}}$$
 $\frac{\partial f}{\partial y}|_{x \text{ constant}}$

 Calculate the numerical derivatives of f(x,y) and compare to the partial derivatives from part 2. What happens if you increase the number of points you use?

$$\frac{\partial f}{\partial x} \approx \frac{f_{i+1,j} - f_{i,j}}{\Delta x} \qquad \frac{\partial f}{\partial y} \approx \frac{f_{i,j+1} - f_{i,j}}{\Delta y}$$

Solving Partial Differential Equations

Partial Differential Equations

• To describe the change in fields, we use partial differential equations which vary in space (2D here), for example:

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$$

- Note we have dropped the x=constant, y=constant for notational conciseness, but they are <u>always</u> implied by partial derivatives
- This equation describes the final state for the process of diffusion of a substance, such as ink in water or concentration of a chemical in a mixture. It can also be solved to define electromagnetic fields or potential fluid flow

Partial Differential Equations

This equation is known as Laplace's Equation

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$$

• Often written using other notation,

$$\nabla^2 f = 0 \text{ or } \Delta f = 0 \text{ where } \nabla^2 \equiv \Delta \equiv \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$

 $f_{xx} + f_{yy} = 0$ where subscripts denote derivatives

• In practice, fields are usually a function of three spatial coordinates and time (2D here for simplicity)

$$f = f(x, y, z, t)$$

Solving Numerically

• There are a number of analytical solutions to this equation

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$$

• But we will use numerical solutions, recall the numerical approximation for the second derivative, adapted for 2D,

$$\frac{\partial^2 f}{\partial x^2} \approx \frac{f(x + \Delta x, y) - 2f(x, y) + f(x - \Delta x, y)}{(\Delta x)^2}$$
$$\frac{\partial^2 f}{\partial y^2} \approx \frac{f(x, y + \Delta y) - 2f(x, y) + f(x, y - \Delta y)}{(\Delta y)^2}$$

Solving Numerically

• There are a number of analytical solutions to this equation

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$$

• But we will use numerical solutions, written here in index notation which shows the "stencil"

$$\frac{\partial^2 f}{\partial x^2} \approx \frac{f_{i+1,j} - 2f_{i,j} + f_{i-1,j}}{(\Delta x)^2}$$

$$\frac{\partial^2 f}{\partial y^2} \approx \frac{f_{i,j+1} - 2f_{i,j} + f_{i,j-1}}{(\Delta y)^2}$$

$$i - 1, j$$

$$i - 1, j$$

$$i + 1,$$

i, j-1

56

Solving Numerically

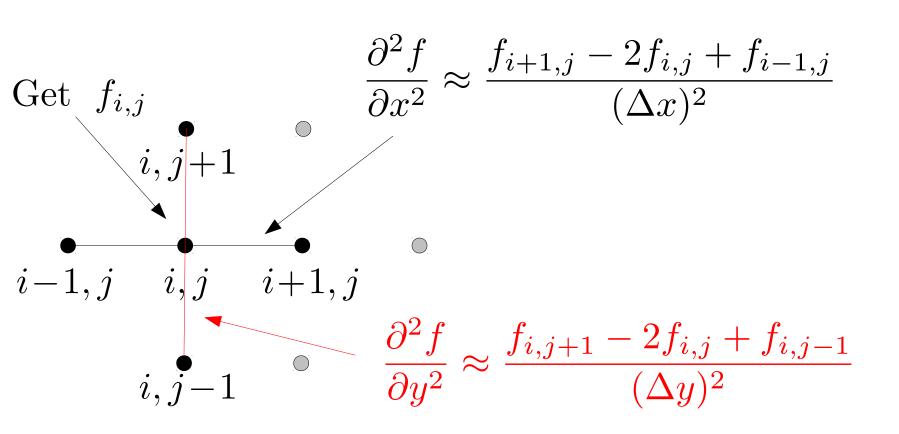
• So we are solving
$$\begin{aligned} \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} &= 0\\ \frac{f_{i+1,j} - 2f_{i,j} + f_{i-1,j}}{(\Delta x)^2} + \frac{f_{i,j+1} - 2f_{i,j} + f_{i,j-1}}{(\Delta y)^2} &= 0 \end{aligned}$$

• Which we rearrange to give

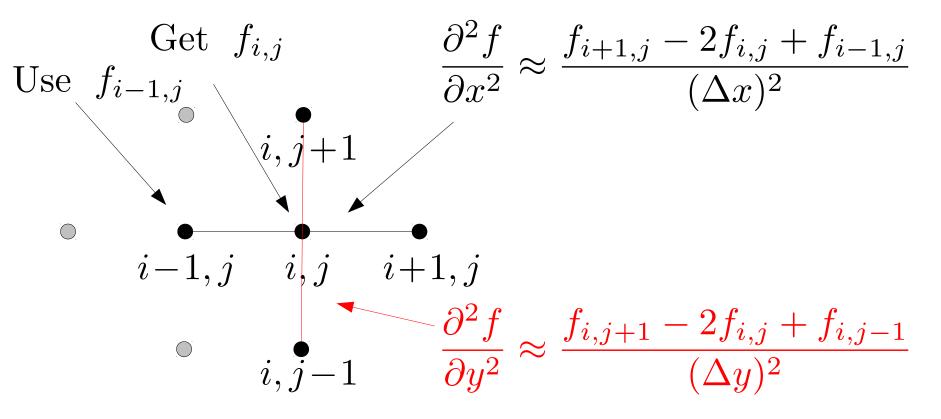
$$f_{i,j} = \frac{1}{2} \frac{(\Delta x)^2 (\Delta y)^2}{(\Delta x)^2 + (\Delta y)^2} \left[\frac{f_{i+1,j} + f_{i-1,j}}{(\Delta x)^2} + \frac{f_{i,j+1} + f_{i,j-1}}{(\Delta y)^2} \right]$$
$$f_{i,j} = \frac{1}{4} \left[\frac{f_{i+1,j} + f_{i-1,j}}{(\Delta x)^2} + \frac{f_{i,j+1} + f_{i,j-1}}{(\Delta y)^2} \right] \Delta x = \Delta y = 1$$

Boundary Conditions

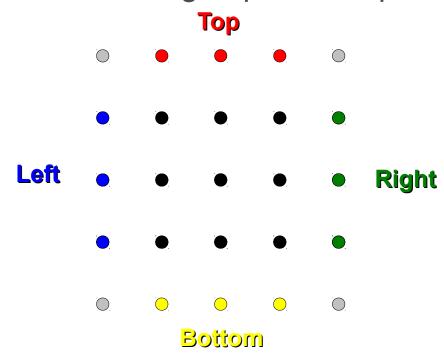
• Notice that if we solve this equation, we use points either side



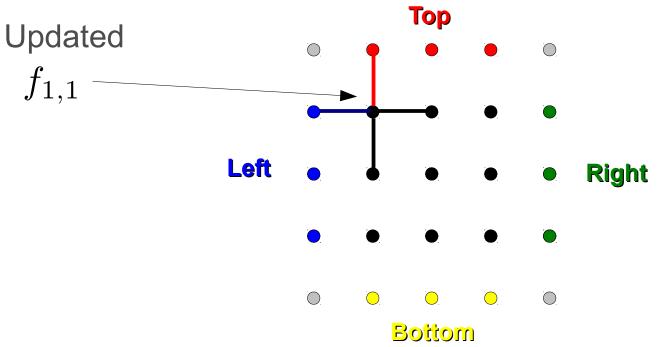
- Notice that if we solve this equation, we use points either side
- Then we move to the next point



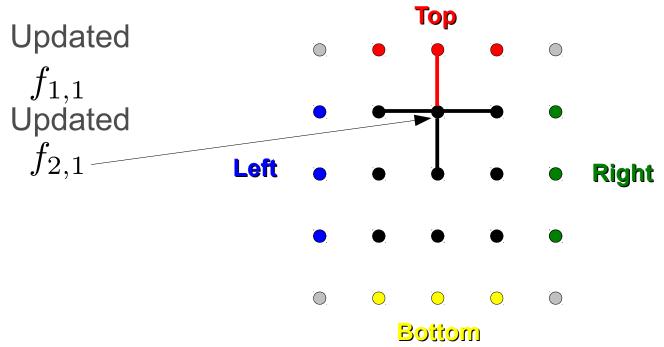
- Notice that if we solve this equation, we use points either side
- Then we move to the next point
- We start from the edge of our domain (boundary)
- These boundary values must be specified and determine the solution we get from solving Laplace's equation



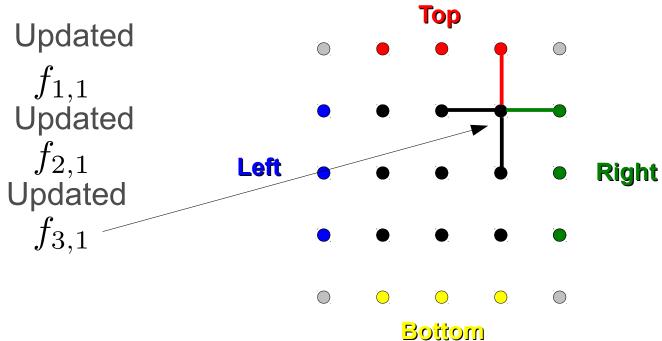
- Notice that if we solve this equation, we use points either side
- Then we move to the next point
- We start from the edge of our domain (boundary)
- These boundary values must be specified and determine the solution we get from solving Laplace's equation



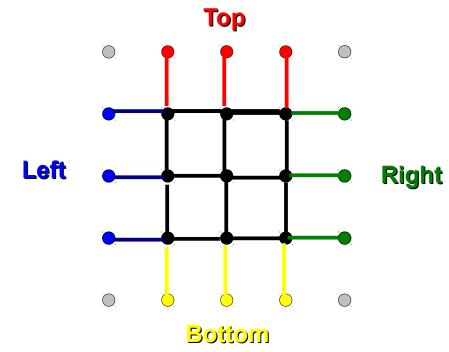
- Notice that if we solve this equation, we use points either side
- Then we move to the next point
- We start from the edge of our domain (boundary)
- These boundary values must be specified and determine the solution we get from solving Laplace's equation



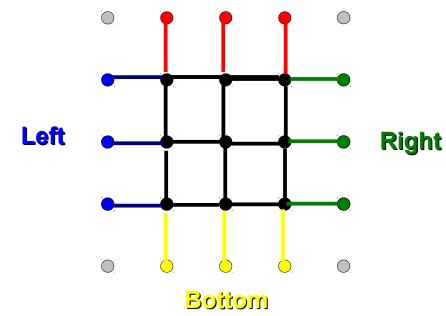
- Notice that if we solve this equation, we use points either side
- Then we move to the next point
- We start from the edge of our domain (boundary)
- These boundary values must be specified and determine the solution we get from solving Laplace's equation



- Proceed until all 9 internal values (in black) are updated Updated $f_{1,1}$ $f_{2,1}$ $f_{3,1}$ $f_{1,2}$ $f_{2,2}$ $f_{3,2}$ $f_{1,3}$ $f_{2,3}$ $f_{3,3}$
- We then repeat the process again starting from these updated values



- Iteration should proceeds until a solution is reached, convergence check: $\left|\sum_{i=1}^{9}\sum_{j=1}^{9}f_{i,j} - \sum_{i=1}^{9}\sum_{j=1}^{9}f_{i,j}^{\text{Previous Iteration}}\right| < \epsilon$
- Iteration must be turned on in Excel (options) or explicitly iterated using a loop in Python/MATLAB



Questions 3

• Starting from Laplace's equation: $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$

$$f_{i,j} = C \left[\frac{f_{i+1,j} + f_{i-1,j}}{(\Delta x)^2} + \frac{f_{i,j+1} + f_{i,j-1}}{(\Delta y)^2} \right]$$

- Where C = 1/4
- Solve with Python, MATLAB or Excel for 9 points, N.B. this must be iterated. Try the following boundary conditions:
 - Top =0, Bottom =1, Left=1, Right=0
 - Top = 1, Bottom=0 and use Periodic Boundaries for others, i.e. for Left = Copy right cell-1 and for Right=Copy left cell+1
 - Top = 0, Bottom=0, Left = sin(pi y), Right = 0 with 0<y<1
 - Before next week: Make sure you understand this. Comment your code, try different numbers of points in the domain, try plotting, test other boundaries. Make notes on what you observe.

Summary

- In today's session you have:
 - Seen what the Continuum assumption means and been shown that, crucially, it describes continuous fields
 - An introduction to fields and how to plot them
 - Been introduced to some simple ordinary and partial differential equations
 - Been shown how to solve basic differential equations numerically
 - Tried to solve them using either a programming language of your choice or Excel

Scalar, Vector and Tensor Fields

• Note that the fields can also be scalar, vector or even tensor fields. Examples include:

u

• Pressure, Concentration of chemical species

$$P = P(x, y, z, t) \qquad C = C(x, y, z, t)$$

• Velocity (3 values at every space and time)

$$\underline{u} = \underline{u}(x, y, z, t) = \begin{pmatrix} v \\ w \end{pmatrix}$$

• Stress tensor (9+ values)

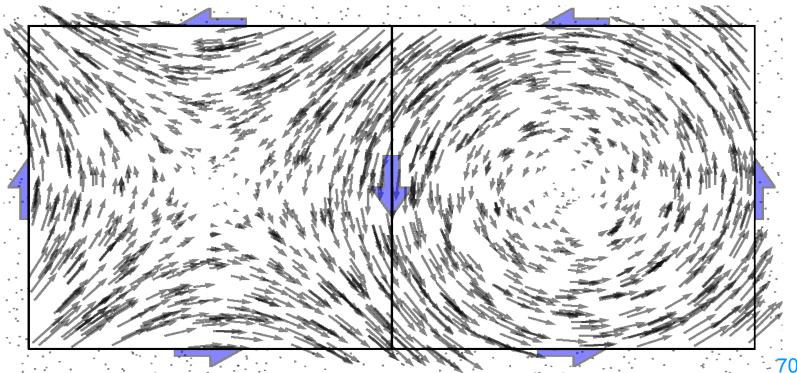
$$\underline{\underline{\Pi}} = \underline{\underline{\Pi}}(x, y, z, t) = \begin{pmatrix} \Pi_{xx} & \Pi_{xy} & \Pi_{xz} \\ \Pi_{yx} & \Pi_{yy} & \Pi_{yz} \\ \Pi_{zx} & \Pi_{zy} & \Pi_{zz} \end{pmatrix}$$

Π

Scalar, Vector and Tensor Fields

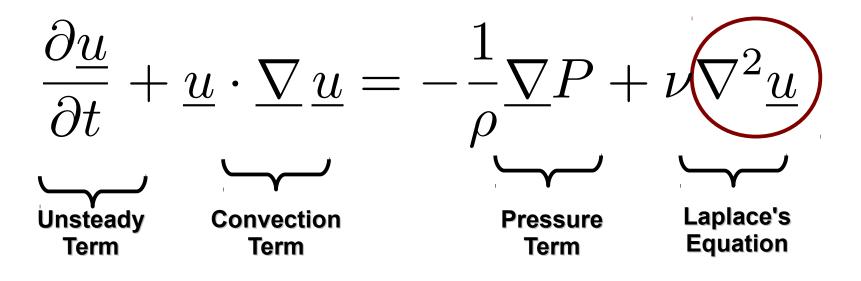
• 2D Velocity Fields example (2 values at every space)

$$\underline{u} = \underline{u}(x, y) = \begin{pmatrix} u \\ v \end{pmatrix}$$



The Navier-Stokes Equation

Describes the flow of single phase Newtonian fluids



- Lots of complexity here we'll cover in next few lessons
- Velocity vector equation so actually three simultaneous equations connected by scalar pressure P 71

Plan for the Continuum Part of the Course

- Where we are in the wider modelling hierarchy
- Understand the Continuum assumption
- Partial differential equations and numerical solutions
- More partial differential equations and numerical solutions
- Two dimensional vector fields
- The Navier-Stokes Equation
 - Assumptions that lead to it
 - Key terms and their meaning (with some extensions)
 - Simplifications and solutions
- Link to the molecular dynamics equations
- Numerical solutions to the Navier-Stokes equation

Session 2

Session 3

72

Session 1

Further Reading

- Differential Equations
 - Engineering Mathematics by K. A. Stroud
- Fluid Dynamics and CFD
 - Hirsch (2007) "Numerical Computation of Internal and External Flows" Elsevier
 - 12 Step Navier Stokes (http://lorenabarba.com/blog/cfdpython-12-steps-to-navier-stokes/)
- Introduction to links to other scales (next week)
 - Mohamed Gad-El-Hak (2006) Gas and Liquid Transport at the Microscale, Heat Transfer Eng., 27:4, 13-29,
 - Irving and Kirkwood (1950) The Statistical Mechanics Theory of Transport Process IV, J. Chem Phys 73

