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● Where we are in the wider modelling hierarchy
● Understand the Continuum assumption
● Partial differential equations and numerical solutions 
● More partial differential equations and numerical solutions 
● Two dimensional vector fields
● The Navier-Stokes Equation

– Assumptions that lead to it
– Key terms and their meaning (with some extensions)
– Simplifications and solutions

● Link to the molecular dynamics equations
● Numerical solutions to the Navier Stokes equation

Plan for the Continuum Part of the Course

Session 1

Session 2

Session 3
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● By the end of the 3 part course you should be able to:
– State the Continuum assumption, specifically for 

continuous fields and how this underpins fluid dynamics

– Understand three dimensional fields, vector calculus and 
partial differential equations

– Be able to solve basic differential equations numerically 

– State the Navier-Stokes Equation, key assumptions, the 
meaning of the terms and how to simplify and solve.

– Understand how to treat the various terms in a numerical 
solutions to the Navier-Stokes equation

– Understand where the continuum modelling fits into the 
hierarchy and links to the molecular and plant scales

Aims
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● By the end of today's session you will have:
– Seen what the Continuum assumption means and been 

shown that, crucially, it describes continuous fields
– An understanding of fields and how to plot them
– Been introduced to some simple ordinary and partial 

differential equations
– Been shown how to solve basic differential equations 

numerically 
– Tried to solve them using either a programming 

language of your choice or Excel

Aims
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Introduction
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Scale Hierarchy
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ContinuumContinuumMolecular/AtomisticMolecular/Atomistic

History of the Continuum vs Atomistic
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Video of MD vs Continuum

https://www.youtube.com/watch?v=aQABqOkPXXA
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The Navier-Stokes Equation

UnsteadyUnsteady
TermTerm

Convection Convection 
TermTerm

PressurePressure
TermTerm

Diffusion Diffusion 
TermTerm

● Describes the flow of single phase Newtonian fluids

● Lots of complexity here, a non-linear partial differential 
equation for velocity and pressure – we'll build up to it

● Apparently impossible to solve directly, complex to solve 
numerically and not proven to have existence and 
smoothness (Clay prize with $1,000,000 reward)
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The Continuum, Calculus and 
Differential Equations
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Definition of a Continuous Function

 is continuous if and only if the limit                      exists
Also              definition
which is more formal.
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Definition of a Continuous Function

 is continuous if and only if the limit                      exists
Also              definition
which is more formal.

Note the continuum 
is a definition; 
essentially an 
assumption that 
works very well in 
most cases (and 
underpins the 
majority of applied 
mathematics)
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Definition of a Derivative
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Better with smaller 

Definition of a Derivative
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Exact in Limit

Definition of a Derivative
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Differential Equations

● Equations which include derivatives are differential 
equations, e.g.

● These are the same as any other equation, for example the 
equation for a line or Newton's law

● Which can also be written as differential equations
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Differential Equations

● Equations which include derivatives are differential 
equations, e.g.

● Order of equation is highest derivative, here 3, 2 and 1

● Equations can be linear or non-linear. Roughly speaking, 
any equation which contains a product of unknown function 
or it's derivatives (here f) is non-linear, e.g.
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Differential Equations

● Differential equations are useful because they describe 
physics in the continuum, for example the Wave Equation

● The Advection-Diffusion Equation (for some chemical 
concentration C, diffusing with coefficient D

● Even Newton's Law, which is continuous in time
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Solving Differential Equations

● Some differential equations, especially if they are linear, can 
be solved exactly. For example:

● This is integrated to give f as a function of x with an arbitrary 
constant of integration. Also for second order equations,

● Most differential equations are too complex to solve directly, 
research typically focuses on numerical solutions
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Numerical Solution to Differential Equations

● Instead we solve numerically, consider the definition of the 
derivative

If we make delta x small we can approximate the derivative 
by taking two points which are arbitrarily close 
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Numerical Solution to Differential Equations

● First order derivatives

● Second order derivatives

● We can introduce short-hand notation for this
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Numerical Solution to Differential Equations

● First order derivatives

● Second order derivatives

● How to write this as code, as an example we consider

for                   and use 

and rearrange to get i+1 value,

f[i+1] = f[i] + a*dx 
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Numerical Solution to Differential Equations

● First order derivatives

● Second order derivatives

● How to write this as code (rearranged to get i+1 value)

f[i+1] = 2*f[i] - f[i-1] + b*dx**2 

f[i+1] = f[i] + a*dx 
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Numerical Solution to Differential Equations

● So if we know the value at f
i
, we can get the value at f

i+1
 a 

small distance, delta x, away

● Once we know the value at f
i+1

, we can get the value at at 

f
i+2

, and so on
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#python

from numpy import *

from matplotlib.pyplot import *

x = linspace(0,2*pi,100)

y = sin(x)

z = cos(x)

plot(x,y,'-r')

plot(x,z,'-b')

show()

%MATLAB

clear all

close all

x = linspace(0,2*pi,100);

y = sin(x);

z = cos(x);

plot(x,y,'-r');

hold all

plot(x,z,'-b')

Python vs MATLAB
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Python vs MATLAB

for i in range(1,Nsteps-1):

       #Comment with hash 

       f[i+1] = 2.*f[i] - f[i-1] + dt**2 * F 

plot(x, 'bo')

show()

● Loop “for i in range(1, Nsteps-1)” where range(1, Nsteps-1) 
replace 1:Nsteps in MATLAB's “for i=1:Nsteps”

● Python uses zero indexing (arrays start from 0)
● Square brackets to access array elements, normal brackets 

for functions (e.g. range function here)
● Indentation used to define scope (four spaces here) no end 

statements needed after loop

● Plots added to figure will only appear when show() called
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Questions 1

1) Use the definition of the derivative                                       
to calculate 

2) Identify order of the following. Which are linear? 

3) Integrate Newton's Law for constant acceleration,

using initial conditions to replace integration constants. 
Solve numerically on a computer and compare results

4) Now solve                               with varying initial conditions.  
                                                            What do you notice?
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Fields and Partial Differential 
Equations
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● We use Newton's law assuming 
continuity in time and position (even in 
a discrete molecular system)

● The Continuum hypothesis refers to 
the continuous nature of fields in 
space. These are 2D or 3D continuous 
functions which evolve in time 

● Assumes that we have so many 
particles it is a continuum.

● In practice, one meter cube of air has 
1025 molecules so works very well

● Although this also works down to 
smaller scales than would be 
expected...

Continuum Fields 
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Continuum Fields 

 is continuous if and only if the limit                      exists

● When is this not true?
● When the Molecular nature becomes apparent
● Extreme events like shock waves
● Discontinuities or near boundaries (especially contact line)
● Fractal systems?

● How do we tell if valid
● Knudsen number for gases

● No Similar metric for dense                                            
fluids (most cases of interest)
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Example of a Field 

● Consider an example 2D field described by an x-y polynomial 

● Consider a grid of 
x and y values

● We plot a bar at 
each x or y 
location with the 
value there
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Example of a Field 
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Two Dimensions Fields (3D plot)

● Limit is a 
continuous 
function

● Here a function of 
two variables

● As we move in 
either x or y 
direction the value 
of f changes
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Two Dimensions Fields (2D plot)

● Limit is a 
continuous 
function

● Here a function of 
two variables

● As we move in 
either x or y 
direction the value 
of f changes

● Contour plot
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Two Dimensions Fields (2D plot)

● Limit is a 
continuous 
function

● Here a function of 
two variables

● As we move in 
either x or y 
direction the value 
of f changes

● Contour plot
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Two Dimensions and Partial Derivatives
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● Note we have dropped the half Delta terms for simplicity

Two Dimensions and Partial Derivatives
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Two Dimensions and Partial Derivatives
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● Note we have dropped the half 
Delta terms for simplicity

Two Dimensions and Partial Derivatives
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● Consider a 
function of two 
variables

Two Dimensions and Partial Derivatives
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Example of a Field and it's Derivatives

● Consider an example field described by an x-y polynomial 

● We can calculate the derivatives at any point
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Example of a Field and it's Derivatives

● Consider an example field described by an x-y polynomial 

● We can also calculate the derivatives numerically (note the 
subscript notation is used again but in 2D with i and j)
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Plotting Fields (3D plot)

● Limit is a 
continuous 
function

● Here a function of 
two variables

● As we move in 
either x or y 
direction the value 
of f changes
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from mpl_toolkits.mplot3d import Axes3D
from matplotlib.pyplot import *
from numpy import *

#Constants
a = -0.2; b = 0.5; c=0.1; d=0.5; e=0.; f=3.
Npoints = 50

#Define Domain
X = linspace(-5, 5, Npoints)
Y = linspace(-5, 5, Npoints)
X, Y = meshgrid(X, Y)
Z = a*X**2 + b*X + c*Y**2. + d*Y + e*X*Y + f

#Plot 3D figure
fig = figure()
ax = fig.gca(projection='3d')
surf = ax.plot_surface(X, Y, Z, cmap=cm.gray)
fig.colorbar(surf)
show()

Plotting Fields (3D plot Code)
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Plotting Fields (2D plot)

● Limit is a 
continuous 
function

● Here a function of 
two variables

● As we move in 
either x or y 
direction the value 
of f changes

● Contour plot
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Plotting Fields (2D plot Code)

from matplotlib.pyplot import *
from numpy import *

#Constants
a = -0.2; b = 0.5; c=0.1; d=0.5; e=0.; f=3.
Npoints = 50

#Define Domain
X = linspace(-5, 5, Npoints)
Y = linspace(-5, 5, Npoints)
X, Y = meshgrid(X, Y)
Z = a*X**2 + b*X + c*Y**2. + d*Y + e*X*Y + f

#Plot 2D figure
contourf(X, Y, Z)
colorbar()
show()
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Questions 2

● Plot the following field as a contour (Python/MATLAB/excel)

● Evaluate partial derivatives in x and y and plot these fields

● Calculate the numerical derivatives of f(x,y) and compare to 
the partial derivatives from part 2. What happens if you 
increase the number of points you use?
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Solving Partial Differential 
Equations
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Partial Differential Equations

● To describe the change in fields, we use partial differential 
equations which vary in space (2D here), for example:

● Note we have dropped the x=constant, y=constant for 
notational conciseness, but they are always implied by partial 
derivatives

● This equation describes the final state for the process of 
diffusion of a substance, such as ink in water or concentration 
of a chemical in a mixture. It can also be solved to define 
electromagnetic fields or potential fluid flow
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Partial Differential Equations

● This equation is known as Laplace's Equation

● Often written using other notation,

● In practice, fields are usually a function of three spatial 
coordinates and time (2D here for simplicity)
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Solving Numerically

● There are a number of analytical solutions to this equation

● But we will use numerical solutions, recall the numerical 
approximation for the second derivative, adapted for 2D,
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Solving Numerically

● There are a number of analytical solutions to this equation

● But we will use numerical solutions, written here in index 
notation which shows the “stencil”
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Solving Numerically

● So we are solving

● Which we rearrange to give
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Boundary Conditions

● Notice that if we solve this equation, we use points either side 
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● Notice that if we solve this equation, we use points either side 
● Then we move to the next point

Boundary Conditions
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● Notice that if we solve this equation, we use points either side 
● Then we move to the next point
● We start from the edge of our domain (boundary)
● These boundary values must be specified and determine the 

solution we get from solving Laplace's equation
TopTop

RightRightLeftLeft

BottomBottom

Boundary Conditions
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● Notice that if we solve this equation, we use points either side 
● Then we move to the next point
● We start from the edge of our domain (boundary)
● These boundary values must be specified and determine the 

solution we get from solving Laplace's equation
TopTop

RightRightLeftLeft

BottomBottom

Boundary Conditions

Updated



62

● Notice that if we solve this equation, we use points either side 
● Then we move to the next point
● We start from the edge of our domain (boundary)
● These boundary values must be specified and determine the 

solution we get from solving Laplace's equation
TopTop

RightRightLeftLeft

BottomBottom

Boundary Conditions

Updated

Updated
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● Notice that if we solve this equation, we use points either side 
● Then we move to the next point
● We start from the edge of our domain (boundary)
● These boundary values must be specified and determine the 

solution we get from solving Laplace's equation
TopTop

RightRightLeftLeft

BottomBottom

Boundary Conditions

Updated

Updated

Updated
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● Proceed until all 9 internal values (in black) are updated

● We then repeat the process again starting from these 
updated values 

TopTop

RightRightLeftLeft

BottomBottom

Boundary Conditions

Updated
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● Iteration should proceeds until a solution is reached, 
convergence check:

● Iteration must be turned on in Excel (options) or explicitly 
iterated using a loop in Python/MATLAB 

RightRightLeftLeft

BottomBottom

Boundary Conditions
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Questions 3

● Starting from Laplace's equation: 
derive the approximation for fij,

● Where
● Solve with Python, MATLAB or Excel for 9 points, N.B. this must be 

iterated. Try the following boundary conditions:
● Top =0, Bottom =1, Left=1, Right=0
● Top = 1, Bottom=0 and use Periodic Boundaries for others, i.e. 

for Left = Copy right cell-1 and for Right=Copy left cell+1
● Top = 0, Bottom=0, Left = sin(pi y), Right = 0 with 0<y<1

● Before next week: Make sure you understand this. Comment 
your code, try different numbers of points in the domain, try 
plotting, test other boundaries. Make notes on what you observe. 



68

● In today's session you have:
– Seen what the Continuum assumption means and been 

shown that, crucially, it describes continuous fields
– An introduction to fields and how to plot them
– Been introduced to some simple ordinary and partial 

differential equations
– Been shown how to solve basic differential equations 

numerically 
– Tried to solve them using either a programming 

language of your choice or Excel

Summary
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Scalar, Vector and Tensor Fields

● Note that the fields can also be scalar, vector or even tensor 
fields. Examples include:
● Pressure, Concentration of chemical species

● Velocity (3 values at every space and time)

● Stress tensor (9+ values)
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Scalar, Vector and Tensor Fields

● 2D Velocity Fields example (2 values at every space)
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The Navier-Stokes Equation

UnsteadyUnsteady
TermTerm

Convection Convection 
TermTerm

PressurePressure
TermTerm

Laplace's Laplace's 
EquationEquation

● Describes the flow of single phase Newtonian fluids

● Lots of complexity here – we'll cover in next few lessons
● Velocity vector equation so actually three simultaneous 

equations connected by scalar pressure P
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● Where we are in the wider modelling hierarchy
● Understand the Continuum assumption
● Partial differential equations and numerical solutions 
● More partial differential equations and numerical solutions 
● Two dimensional vector fields
● The Navier-Stokes Equation

– Assumptions that lead to it
– Key terms and their meaning (with some extensions)
– Simplifications and solutions

● Link to the molecular dynamics equations
● Numerical solutions to the Navier-Stokes equation

Plan for the Continuum Part of the Course

Session 1

Session 2

Session 3
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● Differential Equations
– Engineering Mathematics by K. A. Stroud

● Fluid Dynamics and CFD
– Hirsch (2007) ”Numerical Computation of Internal and 

External Flows” Elsevier

– 12 Step Navier Stokes (http://lorenabarba.com/blog/cfd-
python-12-steps-to-navier-stokes/)

● Introduction to links to other scales (next week)
– Mohamed Gad-El-Hak (2006) Gas and Liquid Transport 

at the Microscale, Heat Transfer Eng., 27:4, 13-29,

– Irving and Kirkwood (1950) The Statistical Mechanics 
Theory of Transport Process IV, J. Chem Phys 

Further Reading
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