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Introduction
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● Where we are in the wider modelling hierarchy
● Understand the Continuum assumption
● Partial differential equations and numerical solutions 
● Link to the molecular dynamics equations
● The Navier-Stokes Equation

– Assumptions that lead to it
– Key terms and their meaning (with some extensions)
– Simplifications and solutions

● More partial differential equations and numerical solutions 
● Assessed exercise - numerical solutions to the Navier-

Stokes equation

Plan for the Continuum Part of the Course

Session 1

Session 2

Session 3
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● By the end of the 3 part course you should be able to:
– State the Continuum assumption, specifically for 

continuous fields and how this underpins fluid dynamics

– Understand three dimensional fields, vector calculus and 
partial differential equations

– Be able to solve basic differential equations numerically 

– State the Navier-Stokes Equation, key assumptions, the 
meaning of the terms and how to simplify and solve.

– Understand how to treat the various terms in a numerical 
solutions to the Navier-Stokes equation

– Understand where the continuum modelling fits into the 
hierarchy and links to the molecular and plant scales

Aims



5

● By the end of today's session you will have:
– Been reminded of vector and tensor fields with a review 

of vector notation 
– Seen the derivation of the Navier-Stokes equation
– Understand the link to discrete systems and the impact 

of the choice of reference frame
– Have an idea of the assumptions made to get the 

continuum fluid dynamics equations of motion
– Seen the physical interpretation of the various terms and 

how to simplify the equation
– A review of solving differential equations numerically 

applied to a simplified Navier-Stokes equation

Aims
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Review
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Scale Hierarchy
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Definition of a Continuous Function

 is continuous if and only if the limit                      exists
Also              definition
which is more formal.

Note the continuum 
is a definition; 
essentially an 
assumption that 
works very well in 
most cases (and 
underpins the 
majority of applied 
mathematics)
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Definition of a Derivative
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Better with smaller 

Definition of a Derivative
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Exact in Limit

Definition of a Derivative
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● MD uses Newton's law assuming 
continuity in time and position in a 
discrete molecular system

● The Continuum hypothesis therefore 
refers to the continuous fields in space. 
These are 2D or 3D continuous 
functions evolving in time 

● Assumes that we have so many 
particles it is a continuum.

● In practice, one meter cube of air has 
1025 molecules so works very well

● The largest molecular simulations are 
of order 109 which is still only micro-
meters. System size is prohibitive

Continuum Fields 
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The Navier-Stokes Equation

UnsteadyUnsteady
TermTerm

Convection Convection 
TermTerm

PressurePressure
TermTerm

Laplace's Laplace's 
EquationEquation

● Describes the flow of single phase Newtonian fluids

● Lots of complexity here
● Velocity vector equation so actually three simultaneous 

equations connected by scalar pressure P

last week
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● A 2D field is a 
function of two 
variables

● Show here in 3D 
for visualisation

● Assumed to be a 
continuous 
function

Two Dimensions and Partial Derivatives
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Get MATLAB Plots Working

x = linspace(-5, 5., 100);
y = linspace(-5, 5., 100);
[X, Y] = meshgrid(x, y);

a = -0.2; b = 0.5; c=0.1; 
d=0.5; e=0.; f=3.

u = a*X.^2 + b*X + c*Y.^2 + d*Y + e*X.*Y + f;

contourf(X, Y, u)
%surf(X, Y, u)
colorbar
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Two Dimensions Fields (2D plot)

● Limit is a 
continuous 
function

● Here a function of 
two variables

● As we move in 
either x or y 
direction the value 
of f changes

● Contour plot
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● Note we have dropped the half Delta terms for simplicity

Two Dimensions and Partial Derivatives
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● Note we have dropped the half 
Delta terms for simplicity

Two Dimensions and Partial Derivatives
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● Consider a 
function of two 
variables

Two Dimensions and Partial Derivatives
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Vector Fields  
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Scalar, Vector and Tensor Fields

● Note that the fields can also be scalar, vector or even tensor 
fields. Examples include:
● Pressure, Concentration of chemical species

● Velocity (3 values at every space and time)

● Stress tensor (9+ values)
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Scalar, Vector and Tensor Fields

● 2D Velocity Fields example (2 values at every space)
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Example of a Vector Field 

● We combine our two examples from last week The example 
2D field described by an x-y polynomial in u and sine and 
cosine function in v
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MATLAB quiver Plots

x = linspace(0, 1., 20);
y = linspace(0, 1., 20);
[X, Y] = meshgrid(x, y);

a = 0.01; b = 0.02; c = 0.01; 
d = 0.01; e = 0.1; f = 0;

u = a*X.^2 + b*X + c*Y.^2 + d*Y + e*X.*Y + f;
v = sin(2*pi*X).*cos(2*pi*Y);

quiver(X, Y, u, v, 1., 'k')
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Vector Calculus

● The upside-down triangle (Nabla) in the Navier-Stokes 
equation is a vector operator defined as follows,

● So dotting this with a vector (divergence) would give a scalar, 

● While applying to a scalar gives a vector (gradient)
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Vector Calculus

● The upside-down triangle (Nabla) in the Navier-Stokes 
equation is a vector operator defined as follows,

● There is also the dyadic or tensor product

Other notation
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Index notation

● A useful notation is to express dimensionality as indices

● We can then express vector operations concisely
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Index notation

● Three rules of index notation
1)Each unique index is a dimension, the number of unique 

indices on each side of the equation must agree

2)Summation convention (Einstein) – repeated indices are 
summed over

3)No indices ever appears more than twice on the same 
symbol groupings
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Navier-Stokes in Index notation

● We can express the Navier-Stokes equations as follows

Notice 
summation 

here. In 3D this 
becomes
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Questions 1

1) Identify if the following expressions are scalars, vectors or 
tensors

2) Write the expressions from 1) in index notation (u
1
, u

2
, u

3
, 

x
1
, x

2
, x

3
, Pi

11
, Pi

12
, etc). 

3) Expand the vector form of the Navier-Stokes Equations to 
write in terms of u,v and w and x,y and z. 
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Derivation of the Navier-
Stokes Equation
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Newton's Second Law
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Lagrangian

Newton's Second Law
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Lagrangian

Newton's Second Law
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Lagrangian

Newton's Second Law
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Reference Frame

Lagrangian                                                Eulerian

Moves with the fluid 
parcel

Stays in one place and 
observes flow past
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Reference Frame

1) Reynold's Transport Theorem
Relates the two frameworks

Because volume is a function of time in a Lagrangian 
framework, differentiation with respect to time gives an 
extra term using chain rule 

This term measures how much momentum flows over 
the suface of a fixed volume (convection)
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Lagrangian

Newton's Second Law

 Eulerian
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Lagrangian

 Eulerian

Newton's Second Law

Divergence 
theorem
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Lagrangian

Pointwise 
Eulerian

Newton's Second Law



Irving and Kirkwood (1950)

The Dirac delta 
infinitely high, 

infinitely thin peak 
formally equivalent 
to the continuum 

differential 
formulation 



The link to the Molecular System

The Dirac delta 
infinitely high, 

infinitely thin peak 
formally equivalent 
to the continuum 

differential 
formulation 

Ensemble average and Dirac delta

1) Density

2) Momentum

3) Temperature
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Lagrangian

Pointwise 
Eulerian

Newton's Second Law

From Irving Kirkwood (1950)
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Lagrangian

Pointwise 
Eulerian

Newton's Second Law

Pointwise 
Eulerian  

Stress
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• Pressure in dense molecular systems have a long history
• Virial form given by Rudolf Clausius in 1870
• Irving and Kirkwood (1950) gave a full localised description,

Kinetic 
theory part
Momentum due 
to average of 
molecules 
crossing a plane
and returning 

Configurational 
part

Inter-molecular 
bonds act like the 

stress in a 
stretched spring

 

Molecular Pressure
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• In the continuum, we do not have a way to get the pressure 
tensor. So we need to make some assumptions. First, 
split into thermodynamic pressure and a shear stress

• Assume Linear stress strain-rate relationship (Newtonian 
fluid/no shear thinning)

Simplifying The Pressure Term
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• Assume an Isotropic fluid (81 components reduced to 2)

• Two coefficients reduced to one using Stokes' hypothesis 
(note viscosity coefficient is assumed to be 
homogeneous so constant in all domain)

• Incompressible assumption allows further simplification

Simplifying The Pressure Term
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• So the final form the pressure tensor used in the Navier 
Stokes Equations is,

• We have a single coefficient of viscosity. This is the 
coefficient obtain from molecular dynamics using auto-
correlation functions (Green-Kubo)

Simplifying The Pressure Term



49

The Navier-Stokes Equation

UnsteadyUnsteady
TermTerm

Convection Convection 
TermTerm

PressurePressure
TermTerm

Diffusion Diffusion 
EquationEquation

● Describes the flow of single phase Newtonian fluids

Note, left hand side has been expanded by 
assuming incompressibility and both sides 

divided by density 
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• Newtonian framework (non-relatavistic and classical)
• Fields are continuous (continuum hypothesis)
• For constitutive laws

– Stress is a linear function of Strain rate
– Isotropy of fluid
– Stoke's hypothesis 
– Viscosity coefficient is homogeneous
– Usually Incompressiblity as well

● Structure of the molecules replaced with a mean field approach
● Viscosity models how quickly flow occurs, autocorrelation in an 

MD system can get viscosity - a model parameter in the 
continuum assumed constant as MD on much shorter times.

● A continuum system will reproduce the behaviour of billions of 
molecules over long times for relatively little computation effort

Summary of Assumptions
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• Only considered single phase flows, we need to model an 
interface; nucleation, contact lines and phase change are 
also very difficult to model

• No model for energy, a separate equation solved if required
• High speed flows (high Mach number) require 

compressibility to be modelled
• Turbulence requires very large scale simulations and 

possibility additional models
• Flow through porous or granular material more complex
• Non-Newtonian fluid require complex visco-elastic 

behaviour through additional models
• Even simple models are often too expensive and complex 

to be used as as part of a general plant scale optimisation

Limitations and Extensions
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Break
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Summary of the Origin of Terms

Acceleration Acceleration 
in Eulerian in Eulerian 
Reference Reference 

FrameFrame

Force, written as divergence of Force, written as divergence of 
pressure tensor and then split pressure tensor and then split 
into scalar pressure and strain into scalar pressure and strain 

times viscosity coefficienttimes viscosity coefficient

Kinematic viscosity is dynamic 
viscosity divided by density
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Simplifying the Navier-Stokes Equation

UnsteadyUnsteady
TermTerm

Convection Convection 
TermTerm

PressurePressure
TermTerm

Diffusion Diffusion 
EquationEquation

• Often we don't need all the terms, for example consider 
pressure driven flow between wide parallel plates
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Simplifying the Navier-Stokes Equation

UnsteadyUnsteady
TermTerm

Convection Convection 
TermTerm

PressurePressure
TermTerm

Diffusion Diffusion 
EquationEquation

Assume no 
convection (fully 
developed)

Assume pressure gradient is 
constant in x, zero in all other 
directions

Assume wide channel so 2D
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Simplifying the Navier-Stokes Equation

UnsteadyUnsteady
TermTerm

ConstantConstant
PressurePressure

TermTerm

Diffusion Diffusion 
EquationEquation

Taking only the x component of velocity
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Review of Numerical Methods
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Numerical Solution to Differential Equations

● Instead we solve numerically, consider the definition of the 
derivative

If we make delta x small we can approximate the derivative 
by taking two points which are arbitrarily close 
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Numerical Solution to Differential Equations

● First order derivatives

● Second order derivatives

● How to write this as code (rearranged to get i+1 value)

f[i+1] = 2*f[i] - f[i-1] + b*dx**2 

f[i+1] = f[i] + a*dx 
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Numerical Solution to Differential Equations

● So if we know the value at f
i
, we can get the value at f

i+1
 a 

small distance, delta x, away

● Once we know the value at f
i+1

, we can get the value at at 

f
i+2

, and so on



61

Solving Partial Equations Numerically

● The same concept can be applied in two dimensions

● Using cell indices, derivatives in each direction can be seen 
to use what is called a five point “stencil”
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Solve this Equation

UnsteadyUnsteady
TermTerm

ConstantConstant
PressurePressure

TermTerm

Diffusion Diffusion 
EquationEquation
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Solve this Equation

● The only new term is the time evolution, which is evaluated 
as follows

● The evolution in time is denoted by superscripts where the 
spatial location is still denoted by subscripts
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Solve this Equation

● Starting from this equation

● We rearrange to get the next time step as follows
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Example MATLAB Script

%problem definition
mu = 10e-3;
rho = 1000.0;
nu = mu/rho;

%Constants
Npoints = 10;
Lx = 1.0;
Ly = 1.0;
dx = Lx/(Npoints-1);
dy = Ly/(Npoints-1);
dt = 10.0;
dPdx = 1.0;
u = zeros(Npoints,Npoints);
un = zeros(Npoints,Npoints);

%Analytical solution
y = linspace(0.0, Ly, Npoints);
uanaly = 0.5*(dPdx/mu)*(y.^2-Ly*y);

for it =1:10000
    %Loop over all points
    for j=2:Npoints-1
        for i=2:Npoints-1
            un(i,j) = u(i,j) + dt*nu* ...
                     ((u(i+1,j)-2.0*u(i,j)+u(i-1,j))/dx^2 ...
                     +(u(i,j+1)-2.0*u(i,j)+u(i,j-1))/dy^2) ...
                     -dt*dPdx/rho;
        end
    end
    u = un;
    %Enforce Boundary Condition
    u(:,1) = 0.0; %Bottom Wall Boundary
    u(1,:) = u(end-1,:); %Left periodic BC
    u(end,:) = u(2,:); %Right periodic BC
    u(:,end) = 0.0; %Top Wall Boundary
    %Plotting
    plot(y, u(5,:), '-o'); hold all
    plot(y, uanaly, 'r-'); hold off
    pause(0.001)
end
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Boundary Conditions

Walls

Wall

Copy Domain to 
make periodic
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● Differential Equations
– Engineering Mathematics by K. A. Stroud

● Fluid Dynamics and CFD
– Hirsch (2007) ”Numerical Computation of Internal and 

External Flows” Elsevier

– 12 Step Navier Stokes (http://lorenabarba.com/blog/cfd-
python-12-steps-to-navier-stokes/)

● Introduction to links to other scales (next week)
– Mohamed Gad-El-Hak (2006) Gas and Liquid Transport 

at the Microscale, Heat Transfer Eng., 27:4, 13-29,

– Irving and Kirkwood (1950) The Statistical Mechanics 
Theory of Transport Process IV, J. Chem Phys 

Further Reading
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