The Continuum

Multi-Scale Modelling IMSE

Part 2 15th November By Edward Smith

Introduction

Plan for the Continuum Part of the Course

- Where we are in the wider modelling hierarchy Session 1
- Understand the Continuum assumption
- Partial differential equations and numerical solutions •
- Link to the molecular dynamics equations •
- The Navier-Stokes Equation
 - Assumptions that lead to it
 - Key terms and their meaning (with some extensions)
 - Simplifications and solutions
- More partial differential equations and numerical solutions
- Assessed exercise numerical solutions to the Navier-Session 3 Stokes equation

Session 2

Aims

- By the end of the 3 part course you should be able to:
 - State the Continuum assumption, specifically for continuous fields and how this underpins fluid dynamics
 - Understand three dimensional fields, vector calculus and partial differential equations
 - Be able to solve basic differential equations numerically
 - State the Navier-Stokes Equation, key assumptions, the meaning of the terms and how to simplify and solve.
 - Understand how to treat the various terms in a numerical solutions to the Navier-Stokes equation
 - Understand where the continuum modelling fits into the hierarchy and links to the molecular and plant scales₄

Aims

- By the end of today's session you will have:
 - Been reminded of vector and tensor fields with a review of vector notation
 - Seen the derivation of the Navier-Stokes equation
 - Understand the link to discrete systems and the impact of the choice of reference frame
 - Have an idea of the assumptions made to get the continuum fluid dynamics equations of motion
 - Seen the physical interpretation of the various terms and how to simplify the equation
 - A review of solving differential equations numerically applied to a simplified Navier-Stokes equation

Review

Scale Hierarchy

Definition of a Continuous Function

Note the continuum is a definition; essentially an assumption that works very well in most cases (and underpins the majority of applied mathematics)

Also $\epsilon-\delta$ definition which is more formal.

Definition of a Derivative

Definition of a Derivative

Definition of a Derivative

Continuum Fields

- MD uses Newton's law assuming continuity in time and position in a discrete molecular system
- The Continuum hypothesis therefore refers to the continuous fields in space. These are 2D or 3D continuous functions evolving in time
- Assumes that we have so many particles it is a continuum.
- In practice, one meter cube of air has 10²⁵ molecules so works very well
- The largest molecular simulations are of order 10⁹ which is still only micrometers. System size is prohibitive

The Navier-Stokes Equation

• Describes the flow of single phase Newtonian fluids

- Lots of complexity here
- Velocity vector equation so actually three simultaneous equations connected by scalar pressure P 13

Two Dimensions and Partial Derivatives

 A 2D field is a function of two variables

$$f = f(x, y)$$

- Show here in 3D for visualisation
- Assumed to be a continuous function

Get MATLAB Plots Working

- x = linspace(-5, 5., 100);y = linspace(-5, 5., 100); [X, Y] = meshgrid(x, y);
- a = -0.2; b = 0.5; c=0.1; d=0.5; e=0.; f=3.
- $u = a*X.^2 + b*X + c*Y.^2 + d*Y + e*X.*Y + f;$

contourf(X, Y, u) %surf(X, Y, u) colorbar

Two Dimensions Fields (2D plot)

• Contour plot

- Limit is a continuous function
- Here a function of two variables

$$f = f(x, y)$$

 As we move in either x or y direction the value of f changes

Two Dimensions and Partial Derivatives

• Note we have dropped the half Delta terms for simplicity

$$\frac{\partial f}{\partial x}|_{y \text{ constant}} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x}$$
17

Two Dimensions and Partial Derivatives

Two Dimensions and Partial Derivatives

 Consider a function of two variables

$$f = f(x, y)$$

$$\frac{\partial f}{\partial x}|_{y \text{ constant}}$$
$$\frac{\partial f}{\partial y}|_{x \text{ constant}}$$

Vector Fields

Scalar, Vector and Tensor Fields

- Note that the fields can also be scalar, vector or even tensor fields. Examples include:
 - Pressure, Concentration of chemical species

$$P = P(x, y, z, t) \qquad C = C(x, y, z, t)$$

• Velocity (3 values at every space and time)

$$\underline{u} = \underline{u}(x, y, z, t) = \begin{pmatrix} u \\ v \\ w \end{pmatrix}$$

• Stress tensor (9+ values)

$$\underline{\underline{\Pi}} = \underline{\underline{\Pi}}(x, y, z, t) = \begin{pmatrix} \Pi_{xx} & \Pi_{xy} & \Pi_{xz} \\ \Pi_{yx} & \Pi_{yy} & \Pi_{yz} \\ \Pi_{zx} & \Pi_{zy} & \Pi_{zz2} \end{pmatrix}$$

Π

П

Scalar, Vector and Tensor Fields

• 2D Velocity Fields example (2 values at every space)

$$\underline{u} = \underline{u}(x, y) = \begin{pmatrix} u \\ v \end{pmatrix}$$

Example of a Vector Field

 We combine our two examples from last week The example 2D field described by an x-y polynomial in u and sine and cosine function in v

$$u(x,y) = ax^2 + bx + cy^2 + dy + exy + f$$

 $v(x, y) = \sin(2\pi x)\cos(2\pi y)$ 0 < x < 1 and 0 < y < 1

MATLAB quiver Plots

$$x = linspace(0, 1., 20);$$

y = linspace(0, 1., 20);
[X, Y] = meshgrid(x, y);

$$a = 0.01; b = 0.02; c = 0.01;$$

 $d = 0.01; e = 0.1; f = 0;$

quiver(X, Y, u, v, 1., 'k')

Vector Calculus

• The upside-down triangle (Nabla) in the Navier-Stokes equation is a vector operator defined as follows,

$$\underline{\nabla} = \underline{i}\frac{\partial}{\partial x} + \underline{j}\frac{\partial}{\partial y} + \underline{k}\frac{\partial}{\partial z}$$

• So dotting this with a vector (divergence) would give a scalar,

$$\nabla \cdot \underline{u} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z}$$

• While applying to a scalar gives a vector (gradient)

$$\underline{\nabla}C = \underline{i}\frac{\partial C}{\partial x} + \underline{j}\frac{\partial C}{\partial y} + \underline{k}\frac{\partial C}{\partial z}$$

Vector Calculus

• The upside-down triangle (Nabla) in the Navier-Stokes equation is a vector operator defined as follows,

$$\underline{\nabla} = \underline{i}\frac{\partial}{\partial x} + \underline{j}\frac{\partial}{\partial y} + \underline{k}\frac{\partial}{\partial z}$$

• There is also the dyadic or tensor product

$$\underline{\nabla} \ \underline{u} = \underline{\nabla} \otimes \underline{u} = \begin{pmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \\ \frac{\partial w}{\partial x} & \frac{\partial w}{\partial y} & \frac{\partial w}{\partial z} \end{pmatrix}$$
Other notation

Index notation

• A useful notation is to express dimensionality as indices

$$\underline{u} = \begin{pmatrix} u \\ v \\ w \end{pmatrix} = u_i = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}$$
$$\underline{\underline{\Pi}} = \Pi_{ij} = \begin{pmatrix} \Pi_{11} & \Pi_{12} & \Pi_{13} \\ \Pi_{21} & \Pi_{22} & \Pi_{23} \\ \Pi_{31} & \Pi_{32} & \Pi_{33} \end{pmatrix}$$

• We can then express vector operations concisely

$$\underline{\nabla}P = \frac{\partial P}{\partial x_i} = \begin{pmatrix} \frac{\partial P}{\partial x_1} \\ \frac{\partial P}{\partial x_2} \\ \frac{\partial P}{\partial x_3} \end{pmatrix}$$

Index notation

- Three rules of index notation
 - 1)Each unique index is a dimension, the number of unique indices on each side of the equation must agree
 - 2)Summation convention (Einstein) repeated indices are summed over

$$u_i v_i = u_1 v_1 + u_2 v_2 + u_3 v_3 = \underline{u} \cdot \underline{v}$$

Note, no need for $\sum_{i=1}^3$

3)No indices ever appears more than twice on the same symbol groupings

Navier-Stokes in Index notation

• We can express the Navier-Stokes equations as follows

Questions 1

1) Identify if the following expressions are scalars, vectors or tensors

$$\underline{\nabla} C \qquad \underline{\nabla} \cdot \underline{u} \qquad \underline{\nabla} \underline{u} \qquad \frac{\partial \underline{u}}{\partial t} \qquad \underline{\nabla} \cdot \underline{\Pi}$$

0

2) Write the expressions from 1) in index notation (u_1 , u_2 , u_3 , x_1 , x_2 , x_3 , Pi₁₁, Pi₁₂, etc).

3) Expand the vector form of the Navier-Stokes Equations to write in terms of u,v and w and x,y and z.

$$\frac{\partial \underline{u}}{\partial t} + \underline{u} \cdot \underline{\nabla} \, \underline{u} = -\frac{1}{\rho} \underline{\nabla} P + \nu \nabla^2 \underline{u}$$

$$m\frac{d^2\boldsymbol{r}}{dt^2} = \mathbf{F}$$

Reference Frame

Lagrangian

Moves with the fluid parcel

$$u = u(t)$$

Eulerian

Stays in one place and observes flow past

$$u = u(\underline{r}, t)$$

Reference Frame

1) Reynold's Transport Theorem Relates the two frameworks

$$\frac{d}{dt} \int_{V(t)} \rho \underline{u} dV = \int_{V(t)} \frac{\partial}{\partial t} \rho \underline{u} dV + \oint_{S} \rho \underline{u} \underline{u} \cdot d\mathbf{S}$$

Because volume is a function of time in a Lagrangian framework, differentiation with respect to time gives an extra term using chain rule

This term measures how much momentum flows over the suface of a fixed volume (convection)

Newton's Second Law

40

Irving and Kirkwood (1950)

The link to the Molecular System

Ensemble average and Dirac delta

1) Density

$$\rho(\mathbf{r},t) \equiv \sum_{i=1}^{N} \left\langle m_i \delta(\mathbf{r}_i - \mathbf{r}); f \right\rangle.$$

2) Momentum

$$\rho(\boldsymbol{r},t)\boldsymbol{u}(\boldsymbol{r},t) \equiv \sum_{i=1}^{N} \left\langle m_{i} \frac{d\boldsymbol{r}_{i}}{dt} \delta(\boldsymbol{r}_{i}-\boldsymbol{r}); f \right\rangle,$$

3) Temperature

$$T(\boldsymbol{r},t) = \frac{1}{3k_B(N-1)} \sum_{i=1}^{N} \left\langle \left(\frac{d\boldsymbol{r}_i}{dt} - \boldsymbol{u}\right)^2 \delta(\boldsymbol{r}_i - \boldsymbol{r}); f \right\rangle.$$

The Dirac delta infinitely high, infinitely thin peak formally equivalent to the continuum differential formulation

Newton's Second Law

From Irving Kirkwood (1950)

Molecular Pressure

- Pressure in dense molecular systems have a long history
 - Virial form given by Rudolf Clausius in 1870
 - Irving and Kirkwood (1950) gave a full localised description,

Simplifying The Pressure Term

• In the continuum, we do not have a way to get the pressure tensor. So we need to make some assumptions. First, split into thermodynamic pressure and a shear stress

$$\underline{\underline{\Pi}} = -P\underline{\underline{I}} + \underline{\underline{\tau}} = -P\delta_{ij} + \tau_{ij}$$

Assume Linear stress strain-rate relationship (Newtonian fluid/no shear thinning)

$$\tau_{ij} \approx C_{ijkl} \epsilon_{kl}$$

where $\epsilon_{ij} = \frac{1}{2} \left[\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right] = \frac{1}{2} \left[\underline{\nabla} \, \underline{u} + \underline{\nabla} \, \underline{u}^T \right]$

Simplifying The Pressure Term

• Assume an Isotropic fluid (81 components reduced to 2)

$$\tau_{ij} = C_{ijkl} \epsilon_{kl} = \lambda \epsilon_{kk} \delta_{ij} + 2\mu \epsilon_{ij}$$

 Two coefficients reduced to one using Stokes' hypothesis (note viscosity coefficient is assumed to be homogeneous so constant in all domain)

$$3\lambda + 2\mu = 0 \qquad \tau_{ij} = -\frac{2}{3}\mu\epsilon_{kk}\delta_{ij} + 2\mu\epsilon_{ij}$$

• Incompressible assumption allows further simplification

$$\underline{\nabla} \cdot \underline{u} = \frac{\partial u_i}{\partial x_i} = 0 \qquad \tau_{ij} = 2\mu\epsilon_{ij} \quad \frac{\partial\tau_{ij}}{\partial x_j} = \mu\nabla^2 u_i$$

Simplifying The Pressure Term

 So the final form the pressure tensor used in the Navier Stokes Equations is,

$$\frac{\partial}{\partial x_j} \Pi_{ij} = -\frac{\partial P}{\partial x_i} + \mu \frac{\partial^2 u_i}{\partial x_j \partial x_j} = -\underline{\nabla}P + \mu \nabla^2 \underline{u}$$

• We have a single coefficient of viscosity. This is the coefficient obtain from molecular dynamics using auto-correlation functions (Green-Kubo)

$$\mu = \frac{V}{k_b T} \int_0^\infty \left\langle \tau_{xy}(t) \tau_{xy}(0) \right\rangle dt$$

The Navier-Stokes Equation

• Describes the flow of single phase Newtonian fluids

Note, left hand side has been expanded by assuming incompressibility and both sides divided by density

Summary of Assumptions

- Newtonian framework (non-relatavistic and classical)
- Fields are continuous (continuum hypothesis)
- For constitutive laws
 - Stress is a linear function of Strain rate
 - Isotropy of fluid
 - Stoke's hypothesis
 - Viscosity coefficient is homogeneous
 - Usually Incompressiblity as well
- Structure of the molecules replaced with a mean field approach
- Viscosity models how quickly flow occurs, autocorrelation in an MD system can get viscosity - a model parameter in the continuum assumed constant as MD on much shorter times.
- A continuum system will reproduce the behaviour of billions of molecules over long times for relatively little computation effort

Limitations and Extensions

- Only considered single phase flows, we need to model an interface; nucleation, contact lines and phase change are also very difficult to model
- No model for energy, a separate equation solved if required
- High speed flows (high Mach number) require compressibility to be modelled
- Turbulence requires very large scale simulations and possibility additional models
- Flow through porous or granular material more complex
- Non-Newtonian fluid require complex visco-elastic behaviour through additional models
- Even simple models are often too expensive and complex to be used as as part of a general plant scale optimisation

Break

Summary of the Origin of Terms

Acceleration in Eulerian Reference Frame

Force, written as divergence of pressure tensor and then split into scalar pressure and strain times viscosity coefficient

Simplifying the Navier-Stokes Equation

• Often we don't need all the terms, for example consider pressure driven flow between wide parallel plates

Simplifying the Navier-Stokes Equation

Assume wide channel so 2D

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$$

Simplifying the Navier-Stokes Equation

Taking only the x component of velocity

Review of Numerical Methods

Numerical Solution to Differential Equations

• Instead we solve numerically, consider the definition of the derivative

$$\frac{df}{dx} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

If we make delta x small we can approximate the derivative by taking two points which are arbitrarily close

$$\frac{df}{dx} \approx \frac{f(x + \Delta x) - f(x)}{\Delta x} = \frac{f_{i+1} - f_i}{\Delta x}$$
$$f_i \quad f_{i+1}$$
$$\overleftarrow{\Delta x}$$

58

Numerical Solution to Differential Equations

• First order derivatives

$$\frac{df}{dx} \approx \frac{f_{i+1} - f_i}{\Delta x}$$

Second order derivatives

$$\frac{d^2 f}{dx^2} \approx \frac{f_{i+1} - 2f_i + f_{i-1}}{(\Delta x)^2}$$

• How to write this as code (rearranged to get i+1 value)

$$\frac{df}{dx} = a \qquad f[i+1] = f[i] + a*dx$$
$$\frac{d^2f}{dx^2} = b \qquad f[i+1] = 2*f[i] - f[i-1] + a*dx$$

b*dx**2

Numerical Solution to Differential Equations

So if we know the value at f_i, we can get the value at f_{i+1} a small distance, delta x, away

- Once we know the value at f_{i+1} , we can get the value at at f_{i+2} , and so on f_i f_{i+1} f_{i+2}

Solving Partial Equations Numerically

• The same concept can be applied in two dimensions

$$\frac{\partial^2 f}{\partial x^2} \approx \frac{f(x + \Delta x, y) - 2f(x, y) + f(x - \Delta x, y)}{(\Delta x)^2}$$

Using cell indices, derivatives in each direction can be seen to use what is called a five point "stencil"
 i i + 1

$$\frac{\partial^2 f}{\partial x^2} \approx \frac{f_{i+1,j} - 2f_{i,j} + f_{i-1,j}}{(\Delta x)^2}$$

$$\frac{\partial^2 f}{\partial y^2} \approx \frac{f_{i,j+1} - 2f_{i,j} + f_{i,j-1}}{(\Delta y)^2}$$

$$i - 1, j$$

$$i - 1, j$$

$$i - 1, j$$

$$i, j - 1$$

$$i, j - 1$$

Solve this Equation

Solve this Equation

• The only new term is the time evolution, which is evaluated as follows

$$\frac{\partial u}{\partial t} \approx \frac{u(t + \Delta t) - u(t)}{\Delta t} = \frac{u_{i,j}^{n+1} - u_{i,j}^n}{\Delta t}$$

• The evolution in time is denoted by superscripts where the spatial location is still denoted by subscripts

$$\frac{u_{i,j}^{n+1} - u_{i,j}^n}{\Delta t} = \nu \left[\frac{u_{i+1,j}^n - 2u_{i,j}^n + u_{i-1,j}^n}{(\Delta x)^2} + \frac{u_{i,j+1}^n - 2u_{i,j}^n + u_{i,j-1}^n}{(\Delta y)^2} \right] - \frac{1}{\rho} \frac{\partial P}{\partial x}$$

Solve this Equation

• Starting from this equation

$$\frac{u_{i,j}^{n+1} - u_{i,j}^{n}}{\Delta t} = \nu \left[\frac{u_{i+1,j}^{n} - 2u_{i,j}^{n} + u_{i-1,j}^{n}}{(\Delta x)^{2}} + \frac{u_{i,j+1}^{n} - 2u_{i,j}^{n} + u_{i,j-1}^{n}}{(\Delta y)^{2}} \right] - \frac{1}{\rho} \frac{\partial P}{\partial x}$$

• We rearrange to get the next time step as follows

$$u_{i,j}^{n+1} = u_{i,j}^{n} + \Delta t \frac{\mu}{\rho} \left[\frac{u_{i+1,j}^{n} - 2u_{i,j}^{n} + u_{i-1,j}^{n}}{(\Delta x)^{2}} + \frac{u_{i,j+1}^{n} - 2u_{i,j}^{n} + u_{i,j-1}^{n}}{(\Delta y)^{2}} \right] - \frac{\Delta t}{\rho} \frac{\partial P}{\partial x}$$

Example MATLAB Script

%problem definition

mu = 10e-3; rho = 1000.0; nu = mu/rho;

%Constants

```
Npoints = 10;

Lx = 1.0;

Ly = 1.0;

dx = Lx/(Npoints-1);

dy = Ly/(Npoints-1);

dt = 10.0;

dPdx = 1.0;

u = zeros(Npoints,Npoints);

un = zeros(Npoints,Npoints);
```

%Analytical solution

y = linspace(0.0, Ly, Npoints); uanaly = 0.5*(dPdx/mu)*(y.^2-Ly*y);

for it =1:10000 %Loop over all points for j=2:Npoints-1 for i=2:Npoints-1 $un(i,j) = u(i,j) + dt^{*}nu^{*} \dots$ $((u(i+1,j)-2.0*u(i,j)+u(i-1,j))/dx^2 ...$ +(u(i,j+1)-2.0*u(i,j)+u(i,j-1))/dy^2) ... -dt*dPdx/rho; end end u = un;%Enforce Boundary Condition u(:,1) = 0.0; %Bottom Wall Boundary u(1,:) = u(end-1,:); %Left periodic BC u(end,:) = u(2,:); %Right periodic BC u(:,end) = 0.0; %Top Wall Boundary %Plotting plot(y, u(5,:), '-o'); hold allplot(y, uanaly, 'r-'); hold off pause(0.001) 65

end

Boundary Conditions

Further Reading

- Differential Equations
 - Engineering Mathematics by K. A. Stroud
- Fluid Dynamics and CFD
 - Hirsch (2007) "Numerical Computation of Internal and External Flows" Elsevier
 - 12 Step Navier Stokes (http://lorenabarba.com/blog/cfdpython-12-steps-to-navier-stokes/)
- Introduction to links to other scales (next week)
 - Mohamed Gad-El-Hak (2006) Gas and Liquid Transport at the Microscale, Heat Transfer Eng., 27:4, 13-29,
 - Irving and Kirkwood (1950) The Statistical Mechanics
 Theory of Transport Process IV, J. Chem Phys

