

Interface Between Molecular and Continuum Simulation of Fluid Dynamics

Edward Smith

Fluid Mechanics Seminar

29/05/19

Collaborators: David Heyes, Daniele Dini, Omar Matar, Carlos Braga, Catherine O'Sullivan, Tamer Zaki, Richard Craster and Erich Muller

Summary

Computational Fluid Dynamics

- Continuous field at every point in space
 - Mass Conservation

$$\frac{\partial \rho}{\partial t} = -\boldsymbol{\nabla} \cdot \rho \boldsymbol{u}$$

• Momentum Balance (Newton's Law)

$$\frac{\partial}{\partial t}\rho \boldsymbol{u} + \boldsymbol{\nabla} \cdot \rho \boldsymbol{u} \boldsymbol{u} = -\boldsymbol{\nabla} P + \mu \nabla^2 \boldsymbol{u}$$

Energy Conservation

$$\frac{\partial}{\partial t}\rho \mathcal{E}dV = -\boldsymbol{\nabla}\cdot \left[\rho \mathcal{E}\boldsymbol{u} + \boldsymbol{\Pi}\cdot\boldsymbol{u} + \boldsymbol{q}\right]$$

Direct Numerical Simulation of Turbulent Couette Flow

Molecular Dynamics

Discrete molecules in continuous space

- Molecular position evolves continuously in time
- Position and velocity from acceleration

$$egin{aligned} \dot{m{r}}_i &
ightarrow \dot{m{r}}_i \ \dot{m{r}}_i &
ightarrow m{r}_i(t) \end{aligned}$$

Acceleration obtained from forces

- Governed by Newton's law for an N-body system
- Point particles with pairwise interactions only

$$m_i \ddot{\boldsymbol{r}}_i = \mathbf{F}_i = \sum_{i \neq j}^N \boldsymbol{f}_{ij} \qquad \quad \Phi(r_{ij}) = 4\epsilon \left[\left(\frac{\ell}{r_{ij}} \right)^{12} - \left(\frac{\ell}{r_{ij}} \right)^6 \right]$$

Molecular Dynamics

Molecular Dynamics Complex Walls and Fluids

Liquid structure causes viscosity

Stick-slip near walls

Molecules of arbitrary complexity

Oil, water and textured surface

Molecular Dynamics Shocks and Multi-Phase

Droplet Formation

Molecular Dynamics Beyond The Continuum

Big whirls have little whirls that feed on their velocity, and little whirls have lesser whirls and so on to viscosity MD

Mass and Energy (the Hamiltonian) are automatically conserved in MD

Coupling Overview

Table Lookup or Coefficients

MD parameter study stored in table and CFD uses data

Embedded Models (HMM)

MD – embedded in a CFD simulation ¹⁾

Domain Decomposition

MD –CFD linked along an interface ²⁾

1) Ren (2007), E et al (2003), Borg et al (2013) 2) O'Connell and Thompson (1995), Flekkøy at al (2000), Nie et al (2004), Hadjiconstantinou et al (1999), Delgado-Buscalioni & Coveney, (2003), Mohamed & Mohamad, (2009)

Coupling Overview

Table Lookup or Coefficients

MD parameter study stored in table and CFD uses data Embedded Models (HMM)

MD – embedded in a CFD simulation ¹⁾

Domain Decomposition

MD –CFD linked along an interface ²⁾

1) Ren (2007), E et al (2003), Borg et al (2013) 2) O'Connell and Thompson (1995), Flekkøy at al (2000), Nie et al (2004), Hadjiconstantinou et al (1999), Delgado-Buscalioni & Coveney, (2003), Mohamed & Mohamad, (2009)

Molecular Dynamics Extracting Coefficients

Non Continuum Shear Phase Map

Coupling Overview

Table Lookup or Coefficients

MD parameter study stored in table and CFD uses data

Embedded Models (HMM)

MD – embedded in a CFD simulation ¹⁾

Domain Decomposition

MD – CFD linked along an interface ²⁾

1) Ren (2007), E et al (2003), Borg et al (2013) 2) O'Connell and Thompson (1995), Flekkøy at al (2000), Nie et al (2004), Hadjiconstantinou et al (1999), Delgado-Buscalioni & Coveney, (2003), Mohamed & Mohamad, (2009)

Coupled Droplet Spreading and MD

Coupled Droplet Spreading and MD

 $\mathcal{L}agrangian$

A Sheared Liquid Bridge

- Two fluid phases and sliding molecular walls
- Simple test case to explore wall velocity vs contact line angle
- Non-Equilibrium Steady State

- Molecular dynamics naturally forms an interface
- Mathematical framework to track moving surface
 - Dynamics, surface tension and curvature
 - Flow along surface of molecules (e.g. surfactants)

Sliding Solid walls (tethered)

Brunel University London

Intrinsic surface

Intrinsic Surface by minimising a penalty function

Chacon & Tarazona (2003) PRL 91, 166103

LEVERHULME TRUST _____

Interfaces Control Volume

Molecular Dynamics simulation of Nucleation

Isosurface of Density

Coupled Simulation of Boiling

- Bubble nucleation occurs naturally in MD
- Density, velocity and temperature passed as boundary conditions

Coupling Overview

Table Lookup or Coefficients

MD parameter study stored in table and CFD uses data **Embedded Models (HMM)**

MD – embedded in a CFD simulation ¹⁾

Domain Decomposition

MD –CFD linked along an interface ²⁾

1) Ren (2007), E et al (2003), Borg et al (2013) 2) O'Connell and Thompson (1995), Flekkøy at al (2000), Nie et al (2004), Hadjiconstantinou et al (1999), Delgado-Buscalioni & Coveney, (2003), Mohamed & Mohamad, (2009)

Coupled Simulation

Assumes a continuous field

$$\frac{\partial}{\partial t}\rho \boldsymbol{u} + \boldsymbol{\nabla} \cdot \rho \boldsymbol{u} \boldsymbol{u} = -\boldsymbol{\nabla} P + \mu \nabla^2 \boldsymbol{u}$$

• Discrete molecules

 $m_i \ddot{\boldsymbol{r}}_i = \mathbf{F}_i$ for all i in N

Coupled Simulation

O'Connell Thompson (1995), Hadjiconstantinou (1998), Flekkoy (2000), Nie et al (2004).

Granular Mechanics

4 CF	D PI	ocessors				
	48	JEN				
l P	roce	ssc	ors			

Particle in Flow (with Drag)

$$f_i = A|u_i - u|(u_i - u)|$$

Equal and opposite force applied back to CFD

Coupling Results – Polymer Brushes

۲	۲	۲	۲		۲	۲	0	۲	۲		6
0	0	0	0		0		0		0		6
	۲				۲		0			0	0
۲	0	0	0	0	0	0	0	0	0		0
0	۲		0		0		0	0	0		0
۲	0	0	0	0	0	0	0	0	0	0	0
	0		0		0		0		0		6
0		0	0				0		0	0	6
0	0		0	0	0	0	0		0		0
۲	0		0	0	0	•	0		0	0	0
	۲				0		0		0		6
۲		۲	0	0	0	0	0	0		0	6
	۲		0		0		0		•		6
۲	0	0		۲		•	0	0	0	0	6
	۲		0	0	0	۲	0		0		6
۲	0	0		0		0	۲	0	0	0	6
	0	0	۲	0	0	0	0		0		6
۲	0	0		0		•	0	0	0	0	0
	0	0	0		0	۲	0	0	0	0	6
0	0	0	0	0	0	0	0	•	0	0	6
۲	0		0		0	0	0	0	0	0	6
۲		۲		0	0	۲	0	0	0	0	6
	0		0	0	0	0	0	0	0	0	6
۲	۲	0		0	0	0	0	0	0	0	6
	0	0	0	0	0	0	0		0	0	6
۲	۲	0	0	0	0	•	0	0	0	۲	0
	0		0		0	0	0		0		6
0	۲	0		•		•	0		0	0	0
	0	۲	۲		0	0	0		0	۲	6
۲		0		•	۲		0	•			6
			0		0		0		•		6
											0

 $Reynolds\ Number$

 $Re \approx 400$

with 300 million molecules

Reynolds Number

 $Re\approx 400$

with 300 million molecules

over a year

energy coloured by velocity

Law of the wall

Coupling Results – Turbulent Couette

Summary

Brunel University London

Computers

Laptop ~4 cores Shared memory Workstation ~24 cores Shared memory

Supercomputer 1000+ cores Individual memory interconnected Localisations lends itself to parallel computing using MPI

- Spatial decomposition employed
- Halo cells (ghost molecules) used to link regions

Halo exchange of variable amounts of data

- MPI_Send
- MPI_Recv

Innovate UK

Computational

- All my results come from my own parallelised MD code
 - Validated against experiments
 - Optimised for good scaling
- Python GUI for Masters' students and collaborators (inc. BP)

- Fortran, C++, Python with OpenFOAM interface
- Best Practice (SSI), Git, Unit test & Docker
- Minimal Python code to test and understand

