

Coupling **Molecular Dynamics** to the Continuum for **Fluid Dynamics Simulation**

By Edward Smith

Unimore

21/05/19

Collaborators: David Heyes, Daniele Dini, Omar Matar, Carlos Braga, Catherine O'Sullivan, Tamer Zaki, Richard Craster and Erich Muller

Overview

- Coupling
 - Computational Fluid Dynamics (CFD)
 - Molecular Dynamics (MD)
- Developing a Coupling Framework
 - Control Volume Functional
 - Constrained Dynamics
 - Link to NEMD
- Coupled Simulations
 - Software Development
 - Results

COUPLING

Computational Fluid Dynamics Molecular Dynamics

Assumes a continuous field

$$\frac{\partial}{\partial t}\rho \boldsymbol{u} + \boldsymbol{\nabla} \cdot \rho \boldsymbol{u} \boldsymbol{u} = \boldsymbol{\nabla} \cdot \boldsymbol{\Pi}$$

• Discrete molecules

 $m_i \ddot{\boldsymbol{r}}_i = \mathbf{F}_i$ for all i in N

- Assumed continuous at every point in space
 - Mass Conservation

$$\frac{\partial \rho}{\partial t} = -\boldsymbol{\nabla} \cdot \rho \boldsymbol{u}$$

Momentum Balance (Newton's Law)

$$rac{\partial}{\partial t}
ho oldsymbol{u} + oldsymbol{
abla} \cdot
ho oldsymbol{u} oldsymbol{u} = oldsymbol{
abla} \cdot oldsymbol{\Pi}$$

• Energy Conservation

$$\frac{\partial}{\partial t}\rho \mathcal{E}dV = -\boldsymbol{\nabla}\cdot \left[\rho \mathcal{E}\boldsymbol{u} + \boldsymbol{\Pi}\cdot\boldsymbol{u} + \boldsymbol{q}\right]$$

Direct Numerical Simulation of Turbulent Couette Flow • Taking Momentum Balance and approximating Π

$$\frac{\partial}{\partial t}\rho \boldsymbol{u} + \boldsymbol{\nabla} \cdot \rho \boldsymbol{u} \boldsymbol{u} = -\boldsymbol{\nabla} \cdot \boldsymbol{\Pi} \qquad \boldsymbol{\Pi} = P \boldsymbol{I} - \mu \boldsymbol{\nabla} \boldsymbol{u}$$

• Gives the Navier-Stokes Equation

$$\frac{\partial}{\partial t}\rho \boldsymbol{u} + \boldsymbol{\nabla} \cdot \rho \boldsymbol{u} \boldsymbol{u} = -\boldsymbol{\nabla} P + \mu \nabla^2 \boldsymbol{u}$$
Viscosity Coefficient

- Beyond simple flow we need further models
 - Multi-phase interface tracking, phase change, flow of energy, chemical species tracking and reactions, shock waves, slip models near boundaries, etc
 - Each brings in more empirical coefficients

• The Navier-Stokes Equation

$$\frac{\partial}{\partial t}\rho \boldsymbol{u} + \boldsymbol{\nabla} \cdot \rho \boldsymbol{u} \boldsymbol{u} = -\boldsymbol{\nabla} \cdot \boldsymbol{\Pi} \qquad \boldsymbol{\Pi} = P\boldsymbol{I} - \mu \boldsymbol{\nabla} \boldsymbol{u}$$

• Finite Difference Method

$$\frac{\partial u_i}{\partial x} \approx \frac{u_{i+1} - u_{i-1}}{2\Delta x}$$

• The Navier-Stokes Equation

$$\frac{\partial}{\partial t}\rho \boldsymbol{u} + \boldsymbol{\nabla} \cdot \rho \boldsymbol{u} \boldsymbol{u} = -\boldsymbol{\nabla} \cdot \boldsymbol{\Pi} \qquad \boldsymbol{\Pi} = P \boldsymbol{I} - \mu \boldsymbol{\nabla} \boldsymbol{u}$$

• Finite Difference Method

$$\frac{\partial u_i}{\partial x} \approx \frac{u_{i+1} - u_{i-1}}{2\Delta x}$$

• Finite Volume Method

$$\frac{\partial}{\partial t} \int_{V} \rho \boldsymbol{u} dV = -\oint_{S} \rho \boldsymbol{u} \boldsymbol{u} \cdot d\mathbf{S} - \oint_{S} \boldsymbol{\Pi} \cdot d\boldsymbol{S}$$

• Other methods: finite element, spectral methods, smooth particle hydrodynamics, lattice Boltzmann, ...

• The Navier-Stokes Equation

$$\frac{\partial}{\partial t}\rho \boldsymbol{u} + \boldsymbol{\nabla} \cdot \rho \boldsymbol{u} \boldsymbol{u} = -\boldsymbol{\nabla} \cdot \boldsymbol{\Pi} \qquad \boldsymbol{\Pi} = P \boldsymbol{I} - \mu \boldsymbol{\nabla} \boldsymbol{u}$$

• Finite Difference Method

$$\frac{\partial u_i}{\partial x} \approx \frac{u_{i+1} - u_{i-1}}{2\Delta x}$$

• Finite Volume Method

$$\frac{\partial}{\partial t} \int_{V} \rho \boldsymbol{u} dV = -\oint_{S} \rho \boldsymbol{u} \boldsymbol{u} \cdot d\mathbf{S} - \oint_{S} \boldsymbol{\Pi} \cdot d\boldsymbol{S}$$

• Other methods: finite element, spectral methods, smooth particle hydrodynamics, lattice Boltzmann, ...

An integrated Navier-Stokes Equation

$$\frac{\partial}{\partial t} \int_{V} \rho \boldsymbol{u} dV = -\oint_{S} \rho \boldsymbol{u} \boldsymbol{u} \cdot d\mathbf{S} - \oint_{S} \boldsymbol{\Pi} \cdot d\boldsymbol{S} \qquad \boldsymbol{\Pi} = P\boldsymbol{I} - \mu \boldsymbol{\nabla} \boldsymbol{u}$$

An integrated Navier-Stokes Equation

$$\frac{\partial}{\partial t} \int_{V} \rho \boldsymbol{u} dV = -\oint_{S} \rho \boldsymbol{u} \boldsymbol{u} \cdot d\mathbf{S} - \oint_{S} \boldsymbol{\Pi} \cdot d\boldsymbol{S} \qquad \boldsymbol{\Pi} = P\boldsymbol{I} - \mu \boldsymbol{\nabla} \boldsymbol{u}$$

An integrated Navier-Stokes Equation

$$\frac{\partial}{\partial t} \int_{V} \rho \boldsymbol{u} dV = -\oint_{S} \rho \boldsymbol{u} \boldsymbol{u} \cdot d\mathbf{S} - \oint_{S} \boldsymbol{\Pi} \cdot d\boldsymbol{S} \qquad \boldsymbol{\Pi} = P\boldsymbol{I} - \mu \boldsymbol{\nabla} \boldsymbol{u}$$

An integrated Navier-Stokes Equation

$$\frac{\partial}{\partial t} \int_{V} \rho \boldsymbol{u} dV = -\oint_{S} \rho \boldsymbol{u} \boldsymbol{u} \cdot d\mathbf{S} - \oint_{S} \boldsymbol{\Pi} \cdot d\boldsymbol{S} \qquad \boldsymbol{\Pi} = P\boldsymbol{I} - \mu \boldsymbol{\nabla} \boldsymbol{u}$$

An integrated Navier-Stokes Equation

$$\frac{\partial}{\partial t} \int_{V} \rho \boldsymbol{u} dV = -\oint_{S} \rho \boldsymbol{u} \boldsymbol{u} \cdot d\mathbf{S} - \oint_{S} \boldsymbol{\Pi} \cdot d\boldsymbol{S} \qquad \boldsymbol{\Pi} = P\boldsymbol{I} - \mu \boldsymbol{\nabla} \boldsymbol{u}$$

An integrated Navier-Stokes Equation

$$\frac{\partial}{\partial t} \int_{V} \rho \boldsymbol{u} dV = -\oint_{S} \rho \boldsymbol{u} \boldsymbol{u} \cdot d\mathbf{S} - \oint_{S} \boldsymbol{\Pi} \cdot d\boldsymbol{S} \qquad \boldsymbol{\Pi} = P\boldsymbol{I} - \mu \boldsymbol{\nabla} \boldsymbol{u}$$

 Exactly links fluxes to changes inside control volume (CV), consider mass flow in a nozzle

Conservative – keeps track of all flow in and out

- Domain split into a grid of finite volumes
 - Boundary conditions must be specified as fluxes
 - Loop with flux equal between adjacent volume in space
 - Sum of flux over volume surface gives change in time

- Example: Wall driven or Couette flow
 - Two infinite plates with fluid in between
 - A good model for tribological and industrial cases of interest

Molecular Dynamics

Discrete molecules in continuous space

- Molecular position evolves continuously in time
- Position and velocity from acceleration

$$egin{aligned} \dot{m{r}}_i &
ightarrow \dot{m{r}}_i \ \dot{m{r}}_i &
ightarrow m{r}_i(t) \end{aligned}$$

Acceleration obtained from forces

- Governed by Newton's law for an N-body system
- Point particles with pairwise interactions only

$$m_i \ddot{\boldsymbol{r}}_i = \mathbf{F}_i = \sum_{i \neq j}^N \boldsymbol{f}_{ij} \qquad \quad \Phi(r_{ij}) = 4\epsilon \left[\left(\frac{\ell}{r_{ij}} \right)^{12} - \left(\frac{\ell}{r_{ij}} \right)^6 \right]$$

Molecular Dynamics

Molecular Dynamics Complex Walls and Fluids

Liquid structure causes viscosity

Stick-slip near walls

Molecules of arbitrary complexity

Oil, water and textured surface

Molecular Dynamics Shocks and Multi-Phase

Droplet Formation

Coupling Overview

Table Lookup or Coefficients

MD parameter study stored in table and CFD uses data

Embedded Models (HMM)

MD – embedded in a CFD simulation ¹⁾

Domain Decomposition

MD –CFD linked along an interface ²⁾

1) Ren (2007), E et al (2003), Borg et al (2013) 2) O'Connell and Thompson (1995), Flekkøy at al (2000), Nie et al (2004), Hadjiconstantinou et al (1999), Delgado-Buscalioni & Coveney, (2003), Mohamed & Mohamad, (2009)

Coupling Overview

Table Lookup or Coefficients

MD parameter study stored in table and CFD uses data **Embedded Models (HMM)**

MD – embedded in a CFD simulation ¹⁾

Domain Decomposition

MD –CFD linked along an interface ²⁾

1) Ren (2007), E et al (2003), Borg et al (2013) 2) O'Connell and Thompson (1995), Flekkøy at al (2000), Nie et al (2004), Hadjiconstantinou et al (1999), Delgado-Buscalioni & Coveney, (2003), Mohamed & Mohamad, (2009)

Assumes a continuous field

$$\frac{\partial}{\partial t}\rho \boldsymbol{u} + \boldsymbol{\nabla} \cdot \rho \boldsymbol{u} \boldsymbol{u} = \boldsymbol{\nabla} \cdot \boldsymbol{\Pi}$$

• Discrete molecules

 $m_i \ddot{\boldsymbol{r}}_i = \mathbf{F}_i$ for all i in N

• Control (Finite) Volume form

$$\frac{\partial}{\partial t} \int_{V} \rho \boldsymbol{u} dV = -\oint_{S} \rho \boldsymbol{u} \boldsymbol{u} \cdot d\mathbf{S} - \oint_{S} \boldsymbol{\Pi} \cdot d\boldsymbol{S}$$

 $m_i \ddot{\boldsymbol{r}}_i = \mathbf{F}_i$ for all i in N

25

O'Connell Thompson (1995), Hadjiconstantinou (1998), Flekkoy (2000), Nie et al (2004).

O'Connell Thompson (1995), Hadjiconstantinou (1998), Flekkoy (2000), Nie et al (2004).

A COUPLING FRAMEWORK

Control Volume Functional Constrained Dynamics Link to NEMD

Irving and Kirkwood (1950)

Brunel University London

Coupled Simulation

Linking the two formulations

 Irving and Kirkwood (1950) express field based quantities using the Dirac delta functional and ensemble averages

$$\rho(\boldsymbol{r},t) = \sum_{i=1}^{N} \left\langle m_i \delta\left(\boldsymbol{r} - \boldsymbol{r}_i\right); f \right\rangle$$

• Same temporal scale

$$\rho(\boldsymbol{r},t) = \sum_{i=1}^{N} m_i \delta\left(\boldsymbol{r} - \boldsymbol{r}_i\right)$$

- Same spatial scale
 - » Dirac delta formally correct but no molecule ever at point r
 - » Any approximation to the Dirac delta is no longer formally correct
 - » A discrete system can only be approximately represented using a continuous field

• The "weak formulation" expressed the equations in integrated form

$$\int_{V} \rho(\boldsymbol{r}, t) dV = \sum_{i=1}^{N} m_{i} \int_{V} \delta\left(\boldsymbol{r} - \boldsymbol{r}_{i}\right) dV$$

• Integrating the Dirac delta function exactly provides a combination of Heaviside functions

Derivation

 Integrating the Dirac delta function

$$\vartheta_i \equiv \int_V \delta\left(\boldsymbol{r} - \boldsymbol{r}_i\right) dV$$

• Over a 2D volume

The Control Volume Functional

• The Control volume functional is the formal integral of the Dirac delta functional in 3 dimensions (3D top hat or box car function)

$$\vartheta_i \equiv \int_{x^-}^{x^+} \int_{y^-}^{y^+} \int_{z^-}^{z^+} \delta(x_i - x) \delta(y_i - y) \delta(z_i - z) dx dy dz$$

$$= [H(x^{+} - x_{i}) - H(x^{-} - x_{i})]$$
$$\times [H(y^{+} - y_{i}) - H(y^{-} - y_{i})]$$

$$\times \left[H(z^+ - z_i) - H(z^- - z_i) \right]$$

• In words

 $\vartheta \equiv \begin{cases} 1 & \text{if molecule is inside volume} \\ 0 & \text{if molecule is outside volume} \end{cases}$

Derivative yields surface fluxes and stresses

Taking the Derivative of the CV function

$$dS_{ix} \equiv -\frac{\partial \vartheta_i}{\partial x_i} = \left[\delta(x^+ - x_i) - \delta(x^- - x_i)\right] \\ \times \left[H(y^+ - y_i) - H(y^- - y_i)\right] \\ \times \left[H(z^+ - z_i) - H(z^- - z_i)\right]$$

Vector form defines six surfaces

$$d\mathbf{S}_i = \mathbf{i}dS_{xi} + \mathbf{j}dS_{yi} + \mathbf{k}dS_{zi}$$

• Or in words

 $d\mathbf{S}_i \equiv \begin{cases} \infty \\ 0 \end{cases}$

if molecule on surface otherwise

The Control Volume (Weak) Form

• The "weak formulation" expressed the equations in integrated form

$$\int_{V} \rho(\boldsymbol{r}, t) dV = \sum_{i=1}^{N} m_{i} \int_{V} \delta\left(\boldsymbol{r} - \boldsymbol{r}_{i}\right) dV = \sum_{i=1}^{N} m_{i} \vartheta_{i}$$

Time Evolution

$$\frac{d}{dt}\sum_{i=1}^{N}m_{i}\vartheta_{i} = \sum_{i=1}^{N}m_{i}\frac{d\boldsymbol{r}_{i}}{dt}\cdot\frac{\vartheta_{i}}{d\boldsymbol{r}_{i}} = \sum_{i=1}^{N}m_{i}\boldsymbol{v}_{i}\cdot d\mathbf{S}_{i} \qquad \begin{array}{l} \text{Surface}\\ \text{Flux} \end{array}$$

- Integrating the Dirac delta function exactly provides a combination of Heaviside functions, which can:
 - » Be mathematically manipulated to give fluxes and forces
 - » Be implemented directly in MD codes
 - » Be linked to the continuum control volume (or finite volume) equations as they are no expressed in the same form

Finite (Control) Volume Formulation

 Recall control volume exactly links fluxes to changes inside, consider mass flow in a nozzle

Finite (Control) Volume Formulation

 Recall control volume exactly links fluxes to changes inside, consider mass flow in a nozzle

$$\frac{d}{dt}\sum_{i=1}^{N} m_i \vartheta_i = \sum_{i=1}^{N} m_i \mathbf{v}_i \cdot d\mathbf{S}_i^{in} - \sum_{i=1}^{N} m_i \mathbf{v}_i \cdot d\mathbf{S}_i^{out}$$

$$\frac{d}{dt}\sum_{i=1}^{N} m_i \vartheta_i = \sum_{i=1}^{N} m_i \mathbf{v}_i \cdot d\mathbf{S}_i^{in} - \sum_{i=1}^{N} m_i \mathbf{v}_i \cdot d\mathbf{S}_i^{out} = \sum_{i=1}^{N} m_i \mathbf{v}_i \cdot d\mathbf{S}_i^{out}$$

The Control Volume Equations

- Mass Conservation $\frac{d}{dt}\sum_{i=1}^{N} m_i \vartheta_i = -\sum_{i=1}^{N} m_i \mathbf{v}_i \cdot d\mathbf{S}_i$
- Momentum Balance

$$\frac{d}{dt} \sum_{i=1}^{N} m_i \mathbf{v}_i \vartheta_i = -\sum_{i=1}^{N} m_i \mathbf{v}_i \mathbf{v}_i \cdot d\mathbf{S}_i + \frac{1}{2} \sum_{i,j}^{N} \mathbf{f}_{ij} \mathbf{n} \cdot d\mathbf{S}_{ij}$$

$$\frac{\partial}{\partial t} \int_{V} \rho dV = -\oint_{S} \rho \boldsymbol{u} \cdot d\mathbf{S}$$

$$\frac{\partial}{\partial t} \int_{V} \rho \boldsymbol{u} dV = -\oint_{S} \rho \boldsymbol{u} \boldsymbol{u} \cdot d\mathbf{S}$$
$$-\oint_{S} \boldsymbol{\Pi} \cdot d\mathbf{S}$$

Exact Conservation for a cubic CV

Accumulation = Forcing + Advection

Momentum evolution from integral of Accumulation

Method of Planes on 6 surfaces

• The Control volume functional is the formal integral of the Dirac delta functional in 3 dimensions (3D top hat or box car function)

$$\vartheta_{i} \equiv \int_{z^{-}}^{z^{+}} \int_{y^{-}}^{y^{+}} \int_{x^{-} + \xi^{-}(y, z, t)}^{x^{+} + \xi^{+}(y, z, t)} \delta(x - x_{i}) \,\delta(y - y_{i}) \,\delta(z - z_{i}) \,dxdydz$$

$$= \left[H \left(x^{+} + \xi^{+} - x_{i} \right) - H \left(x^{-} + \xi^{-} - x_{i} \right) \right]$$

$$\times \left[H(y^+ - y_i) - H(y^- - y_i) \right]$$

$$\times \left[H(z^+ - z_i) - H(z^- - z_i) \right]$$

- In words
- $\vartheta \equiv \begin{cases} 1 & \text{if molecule is inside volume} \\ 0 & \text{if molecule is outside volume} \end{cases}$

Moving liquid-vapour interfaces

• Derivative now includes terms for moving surface, curvature, etc

$$dS_{xi}^{+} = \begin{bmatrix} \dot{x} - \dot{x}_{i} + \dot{y}_{i} \frac{\partial \xi^{+}}{\partial y_{i}} + \dot{z}_{i} \frac{\partial \xi^{+}}{\partial z_{i}} + \frac{\partial \xi^{+}}{\partial t} \end{bmatrix} \delta (x^{+} + \xi^{+} - x_{i})$$
Allows MOP stresses to be obtained on arbitrary surfaces
$$\times \begin{bmatrix} H(y^{+} - y_{i}) - H(y^{-} - y_{i}) \end{bmatrix} \\ \times \begin{bmatrix} H(z^{+} - z_{i}) - H(z^{-} - z_{i}) \end{bmatrix}$$
Vapour phase
$$Vapour phase$$
Vapour phase

Sliding Solid walls (tethered)

Brunel University London

Coupled Simulation

Only volume averages, fluxes and stresses

$$\frac{\partial}{\partial t} \int_{V} \rho \boldsymbol{u} dV = -\oint_{S} \rho \boldsymbol{u} \boldsymbol{u} \cdot d\mathbf{S} - \oint_{S} \boldsymbol{\Pi} \cdot d\mathbf{S}$$

Use the same volumes

• Exact sum of discrete molecules in volume, fluxes and stresses (method of planes)

$$\frac{d}{dt}\sum_{i=1}^{N}m_{i}\mathbf{v}_{i}\vartheta_{i} = -\sum_{i=1}^{N}m_{i}\mathbf{v}_{i}\mathbf{v}_{i} \cdot d\mathbf{S}_{i} + \frac{1}{2}\sum_{i,j}^{N}\boldsymbol{f}_{ij}\mathbf{n} \cdot d\mathbf{S}_{ij}$$

- It is problematic to discuss continuous fields in a discrete system
 We can **never** know values at a point in space in a discrete system
 So we should accept this and only ever use spatial averages...
- Control volume (or weak) formulations expresses the equations of motion as the fluxes, forces and values inside arbitrary volumes
 "It is of philosophical interest to interject here a thought, that perhaps such weak formulation are indeed the requirement of nature as opposed to differential equations"

Zienkiewicz (1975) Finite Elements in Fluid, 1st Edition

- Demonstrate mass, momentum and energy laws are exactly satisfied » Linking the non-unique pressure tensor to momentum change inside a volume (c.f. Schofield and Henderson 1982)
 - » Provides an exact bookkeeping, useful for a number of applications
 - » CV functional mathematical localises to a volume allowing derivation of local constraints for nonequilibrium molecular dynamics (NEMD)

Coupled Simulation

- Constrain the momentum in a control volume
 - Fix MD volume to have the same momentum as the CFD

- Constrain the momentum in a control volume
 - Fix MD volume to have the same momentum as the CFD

$$g(\boldsymbol{q}_i, \dot{\boldsymbol{q}}_i) = \sum_{i=1}^{N} m_i \dot{\boldsymbol{q}}_i \vartheta_i - \int_{V} \rho \boldsymbol{u} dV = 0$$

- We use the principle of least action $\mathcal{L}_c \equiv \mathcal{L} + m{\lambda} \cdot m{g}$
 - Valid as constraint is semi-holonomic
 - Least action constrained Lagrangian \rightarrow Euler Lagrange

$$\delta A_c = \delta \int_a^b \mathcal{L}_c dt = 0 \qquad \qquad \frac{d}{dt} \frac{\partial \mathcal{L}_c}{\partial \dot{q}_i} - \frac{\partial \mathcal{L}_c}{\partial q_i} = 0,$$

Least Action used by O'Connell Thompson (1995)

- Constrain the momentum in a control volume
 - Fix MD volume to have the same momentum as the CFD

$$g(\boldsymbol{q}_i, \dot{\boldsymbol{q}}_i) = \sum_{i=1}^{N} m_i \dot{\boldsymbol{q}}_i \vartheta_i - \int_{V} \rho \boldsymbol{u} dV = 0$$

• The conjugate momentum is,

$$\boldsymbol{p}_i = \frac{\partial \mathcal{L}_c}{\partial \boldsymbol{\dot{q}_i}} = m_i \boldsymbol{\dot{q}}_i + m_i \vartheta_i \boldsymbol{\lambda}$$

• And the constrained Euler Lagrange equation,

$$\dot{\boldsymbol{p}}_i = \frac{\partial \mathcal{L}_c}{\partial \boldsymbol{q_i}} = \boldsymbol{F}_i - \boldsymbol{\lambda} m_i \dot{\boldsymbol{q}}_i \cdot d\mathbf{S}_i$$

• Substituting into the constraint and solving for lambda

$$\boldsymbol{\lambda} = \frac{1}{\sum_{n=1}^{N} m_n \vartheta_n^2} \left[\sum_{n=1}^{N} \boldsymbol{p}_n \vartheta_n - \int_{V} \rho \boldsymbol{u} dV \right],$$

• Gives the following equations of motion

$$\begin{split} \dot{\boldsymbol{q}}_{i} &= \frac{\boldsymbol{p}_{i}}{m_{i}} - \frac{\vartheta_{i}}{M_{I}} \left[\sum_{n=1}^{N} \boldsymbol{p}_{n} \vartheta_{n} - \int_{V} \rho \boldsymbol{u} dV \right], \\ \dot{\boldsymbol{p}}_{i} &= \boldsymbol{F}_{i} - \frac{m_{i} \dot{\boldsymbol{q}}_{i} \cdot d\boldsymbol{S}_{i}}{M_{I}} \left[\sum_{n=1}^{N} \boldsymbol{p}_{n} \vartheta_{n} - \int_{V} \rho \boldsymbol{u} dV \right], \end{split}$$

Combining the equations we get Newton's law

$$m_i \ddot{m{r}}_i = m{F}_i + m{F}_i^C$$

 The same equation can be obtained by applying Gauss' principle of least constraint with same g

$$\frac{\partial}{\partial \boldsymbol{r}_{ij}} \sum_{i=1}^{N} \left[\boldsymbol{F}_{i} - \boldsymbol{r}_{ij} \right]^{2} - \boldsymbol{\lambda} \cdot \boldsymbol{g} = 0$$

Constrained Control Volume

Constrained Control Volume

Using linear weighting between surfaces

 \geq

 $f_{nm} dS^{2+}_{xnm}$

• Forcing applies an arbitrary 18 component 3D stress field

Using linear weighting between surfaces

Link to SLLOD

• We can apply the constraint in a grid of control volumes with indices *I*,*J*,*K* $m_i \ddot{r}_i = F_i + F_i^{C_{IJK}}$

Link to SLLOD

• We can apply the constraint in a grid of control volumes with indices *I*,*J*,*K* $m_i \ddot{r}_i = F_i + F_i^{C_{IJK}}$

- SLLOD is the limiting case with
 - No CFD time evolution
 - Infinitely wide volumes

Link to SLLOD

• We can apply the constraint in a grid of control volumes with indices I, J, K

 $m_i \ddot{\boldsymbol{r}}_i = \boldsymbol{F}_i + \boldsymbol{F}_i^{C_{IJK}}$

- SLLOD is the limiting case with
 - No CFD time evolution
 - Infinitely wide volumes
 - Infinitesimally thin volumes

Brunel University

Link to SLLOD

 We can apply the constraint in a grid of control volumes with indices I,J,K $m_i \ddot{\boldsymbol{r}}_i = \boldsymbol{F}_i + \boldsymbol{F}_i^{C_{IJK}}$

- SLLOD is the limiting case with
 - No CFD time evolution
 - Infinitely wide volumes
 - Infinitesimally thin volumes
- Resulting energy addition in this limiting case is the same as SLLOD

 $\int_{-\infty} \lim_{\Delta x \to \infty} \lim_{\Delta y \to 0} \lim_{\Delta z \to \infty} \dot{\boldsymbol{r}}_i \cdot \boldsymbol{F}_i^{C_{IJK}} dy$ $= \nabla u : \Pi_{MD} = \hat{\mathcal{H}}_{SLLOD}$

• Phase space compressibility κ is defined as,

$$\kappa = \sum_{i=1}^{N} \left[rac{\partial}{\partial oldsymbol{p}_{i}} \cdot \dot{oldsymbol{p}}_{i} + rac{\partial}{\partial oldsymbol{q}_{i}} \cdot \dot{oldsymbol{q}}_{i}
ight]$$

• Substituting in the equations of motion and working through gives an expression in terms of surface fluxes

$$\kappa = \frac{(\mathcal{D} - 1)}{M_I} \sum_{i=1}^N \left(m_i \boldsymbol{\lambda} \vartheta_i - \boldsymbol{p}_i \vartheta_i - M_I \boldsymbol{\lambda} \right) \cdot d\mathbf{S}_i$$

• Where

$$\boldsymbol{\lambda} = \frac{1}{\sum_{n=1}^{N} m_n \vartheta_n^2} \left[\sum_{n=1}^{N} \boldsymbol{p}_n \vartheta_n - \int_{V} \rho \boldsymbol{u} dV \right],$$

- Apply localised momentum constraint using CV function, ϑ_i

$$g(\boldsymbol{r}_i, \dot{\boldsymbol{r}}_i) = \sum_{i=1}^N m_i \dot{\boldsymbol{r}}_i \vartheta_i - \int_V \rho \boldsymbol{u} dV = 0$$

- The resulting equations use the exact CV bookkeeping
 - Iterate, like SHAKE, to ensure time evolution of momentum is EXACTLY controlled (apply force, get flux, correct force, get flux)
 - » Only possible by counting flux of every molecule and all stresses
- A useful NEMD constraint?
 - » Phase space compression is all due to surface flux
 - » Limiting case of infinitesimal volumes adds the same energy as the SLLOD algorithm
 - » Could be applied to localised thermostats or control other quantities in an NEMD simulation

Coupled Simulation

COUPLED SIMULATION

Software Developments Results

CPL library

CPL LIBRARY

- Open Source (www.cpl-library.org) Fortran, C, C++ and Python bindings
- Designed to facilitate the linking of massively parallel codes with minimal impact on performance of each code (based on MPI)
- Shared library with no external dependencies beyond standard packages
- Minimal set of functions and examples with Python and google tests with key functionality (and examples) subject to continuous integration testing
- Aims to lower barrier to entry for coupled simulation

ABOUT DOWNLOAD DOCUMENTATION FAQ CONTACT

CPL LIBRARY

ABOUT DOWNLOAD DOCUMENTATION FAQ CONTACT

INTRODUCTION TO CPL LIBRARY

CPL LIBRARY is a communications and topology management system for coupling *any* continuum fluid dynamics (CFD) solver to *any* molecular dynamics (MD) code. **CPL LIBRARY** is free and open-source.

A full tutorial and example codes written in python, C++ and Fortran are provided with **CPL LIBRARY**. Their purpose is to provide templates that are easily replaced by the user with any CFD or MD code of their choice

CPL library

speedup (--)

- Current focus on reliability and ease of use
- Maintains separate scope of each code by linking shared library

Weak scaling	
- Particle only	Х
- Particle Coupled	0

Coupled Simulation Software

Coupled Simulation Software

Coupled Simulation Software

Extending to use LAMMPS

Extending to use LAMMPS

All Developed with Unit Testing

•Testing the basic units of code

```
TEST_F(CPL_Force_Test, test_CPL_array_size) {
int nd = 9;
int icell = 3;
int jcell = 3;
int kcell = 3;
CPL::ndArray<double> buf;
int shape[4] = {nd, icell, jcell, kcell};
buf.resize (4, shape);
```

//Test sizes and shapes

ASSERT_EQ(buf.size(), nd*icell*jcell*kcell); ASSERT_EQ(buf.shape(0), nd); ASSERT_EQ(buf.shape(1), icell); ASSERT_EQ(buf.shape(2), jcell); ASSERT_EQ(buf.shape(3), kcell);

Software Sustainability Institute

Coupling Results – Polymer Brushes

۲	۲	۲	۲		۲	۲	0	۲	۲		6
0	0	9	0		0		0		0		0
	۲				۲		0			0	0
۲	0	0	0	0	0	0	0	0	0		0
0	۲		0		0		0	0	0		0
۲	0	0	0	0	0	0	0	0	0	0	0
	0		0		0		0		0		6
0		0	0				0		0	0	6
0	0		0	0	0	0	0		0		0
۲	0		0	0	0	•	0		0	0	0
	۲				0		0		0		6
۲		۲	0	0	0	0	0	0		0	6
	۲		0		0		0		•		6
۲	0	0		۲		•	0	0	0	0	6
	۲		0	0	0	۲	0		0		6
۲	0	0		0		0	۲	0	0	0	6
	0	0	۲	0	0	0	0		0		6
۲	0	0		0		•	0	0	0	0	0
	0	0	0		0	۲	0	0	0	0	6
0	0	0	0	0	0	0	0	•	0	0	6
	0		0		0	0	0	0	0	0	6
۲		۲		0	0	۲	0	0	0	0	6
	0		0	0	0	0	0	0	0	0	6
۲	۲	0		0	0	0	0	0	0	0	6
	0	0	0	0	0	0	0		0	۲	6
۲	۲	0	0	0	0	•	0	0	0	۲	0
	0		0		0	0	0		0		6
0	۲	0		•		•	0		0	0	0
	0	۲	۲		0	0	0		0	۲	6
۲		0		•	۲		0	•			6
			0		0		0		•		6
											0

 $Reynolds\ Number$

 $Re \approx 400$

with 300 million molecules

Reynolds Number

 $Re\approx 400$

with 300 million molecules

sosurfaces of turbulent kineti energy coloured by velocity

molecules

Isosurfaces of turbulent kinetic energy coloured by velocity

Coupling Results – Turbulent Couette

Molecular Dynamics simulation of Nucleation

Isosurface of Density

Coupled Simulation of Boiling

- Bubble nucleation occurs naturally in MD
- Density, velocity and temperature passed as boundary conditions

Overview

- Coupling
 - Computational Fluid Dynamics (CFD)
 - Molecular Dynamics (MD)
- Developing a Coupling Framework
 - Control Volume Functional
 - Constrained Dynamics
 - Link to NEMD
- Coupled Simulations
 - Software Development
 - Results

EXTRA SLIDES

Constrained Dynamics Interaction Control Volume

- Constrain the momentum in a control volume
 - Fix MD volume to have the same momentum as the CFD

$$g(\boldsymbol{q}_i, \dot{\boldsymbol{q}}_i) = \sum_{i=1}^N m_i \dot{\boldsymbol{q}}_i \vartheta_i - \int_V \rho \boldsymbol{u} dV = 0$$

• Derivatives we'll need to apply constraint as $\frac{\partial \mathcal{L}_c}{\partial x} = \frac{\partial \mathcal{L}}{\partial x} + \frac{\partial g}{\partial x}$

$$\frac{\partial g}{\partial \boldsymbol{q}_{i}} = \frac{\partial}{\partial \boldsymbol{q}_{i}} \left[\sum_{j=1}^{N} m_{j} \dot{\boldsymbol{q}}_{j} \vartheta_{j} - \int_{V} \rho \boldsymbol{u} dV \right] = m_{i} \dot{\boldsymbol{q}}_{i} \cdot \frac{\partial \vartheta_{i}}{\partial \boldsymbol{q}_{i}} = m_{i} \dot{\boldsymbol{q}}_{i} \cdot d\mathbf{S}_{i}$$
$$\frac{\partial g}{\partial \dot{\boldsymbol{q}}_{i}} = \frac{\partial}{\partial \dot{\boldsymbol{q}}_{i}} \left[\sum_{j=1}^{N} m_{j} \dot{\boldsymbol{q}}_{j} \vartheta_{j} - \int_{V} \rho \boldsymbol{u} dV \right] = m_{i} \vartheta_{i}$$

- Constrain the momentum in a control volume
 - Fix MD volume to have the same momentum as the CFD

$$g(\boldsymbol{q}_{i}, \dot{\boldsymbol{q}}_{i}) = \sum_{i=1}^{N} m_{i} \dot{\boldsymbol{q}}_{i} \vartheta_{i} - \int_{V} \rho \boldsymbol{u} dV = 0$$

Constraint is Semi-holonomic if $\frac{d}{dt} \frac{\partial g}{\partial \dot{q}_{i}} - \frac{\partial g}{\partial q_{i}} = 0$

Which we see is true by substituting in constraint derivatives

$$m_i \frac{d\vartheta_i}{dt} - m_i \dot{\boldsymbol{q}}_i \cdot d\mathbf{S}_i = m_i \frac{d\boldsymbol{q}_i}{dt} \cdot \frac{d\vartheta_i}{d\boldsymbol{q}_i} - m_i \dot{\boldsymbol{q}}_i \cdot d\mathbf{S}_i = 0$$

The Control Volume Functional

• The Control volume function is the integral of the Dirac delta function in 3 dimensions

$$\vartheta_s \equiv \int_V \delta(\mathbf{r} - \mathbf{r}_i + s\mathbf{r}_{ij})dV = \begin{bmatrix} H(x^+ - x_i + sx_{ij}) - H(x^- - x_i + sx_{ij}) \\ \times [H(y^+ - y_i + sy_{ij}) - H(y^- - y_i + sy_{ij})] \\ \times [H(z^+ - z_i + sz_{ij}) - H(z^- - z_i + sz_{ij})] \end{bmatrix}$$

. Length of interaction inside the CV

$$\ell_{ij} = \int\limits_0^1 \vartheta_s ds$$

98

Derivative yields surface fluxes and stresses

Taking the Derivative of the CV function

•

.

$$\frac{\partial \vartheta_s}{\partial x} \equiv \begin{bmatrix} \delta(x^+ - x_i + sx_{ij}) - \delta(x^- - x_i + sx_{ij}) \end{bmatrix} \\ \times \begin{bmatrix} H(y^+ - y_i + sy_{ij}) - H(y^- - y_i + sy_{ij}) \end{bmatrix} \\ \times \begin{bmatrix} H(z^+ - z_i + sz_{ij}) - H(z^- - z_i + sz_{ij}) \end{bmatrix}$$

Surface fluxes over the top and bottom surface

$$dS_{xij} \equiv \int_{0}^{1} \frac{\partial \vartheta_s}{\partial x} ds = dS_{xij}^+ - dS_{xij}^-$$
$$dS_{xij}^+ = \frac{1}{2} \underbrace{\left[sgn(x^+ - x_i) - sgn(x^+ - x_j)\right]}_{MOP} S_{xij}$$

Volume Average Heat Flux

• Total = Kinetic + Configurational $J_q = J_q^K + J_q^\phi$

Kinetic

$$\mathbf{J}_{qV}^{K}(\mathbf{r}_{m},t) = \frac{1}{\Delta V} \left[\sum_{i=1}^{N} e_{i} \mathbf{v}_{i} \vartheta_{i} - \bar{\mathbf{v}}(\mathbf{r}_{m},t) \sum_{i=1}^{N} e_{i} \vartheta_{i} \right]$$

Configurational

$$\mathbf{J}_{qV}^{\phi}\left(\mathbf{r}_{m},t\right) = -\frac{1}{\Delta V}\frac{1}{2}\left[\sum_{i,j}^{N}\mathbf{r}_{ij}\mathbf{F}_{ij}\cdot\mathbf{v}_{i}\ell_{ij} - \left(\sum_{i,j}^{N}\mathbf{r}_{ij}\mathbf{F}_{ij}\ell_{ij}\right)\cdot\bar{\mathbf{v}}\left(\mathbf{r}_{m}\right)\right]$$

Surface (MOP) Heat Flux

• Total = Kinetic + Configurational $J_q = J_q^K + J_q^\phi$

Kinetic

$$J_{qA,x}^{K} = \frac{1}{\Delta A_{x}} \sum_{i=1}^{N} e_{i} \left(v_{ix} - \bar{v}_{x} \left(r_{m} \right) \right) \delta \left(x_{i} - x_{+} \right) S_{xi}$$

$Configurational J_{qA,x}^{\phi} = -\frac{1}{\Delta A_{x+}} \frac{1}{2} \sum_{i,j}^{N} \mathbf{F}_{ij} \cdot (\mathbf{v}_{i} - \bar{\mathbf{v}}(\mathbf{r}_{x+})) S_{ij}(x_{+})$