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Summary 

• Introduction 

• Heat Flux - Fourier’s law and beyond 

• Molecular Dynamics 

 

• Two Cases 

• Temperature-Driven Flow  

• Shear-Driven (Couette) Flow 

 



INTRODUCTION 
Section 1 



Fourier’s law of Heat Conduction 

• Heat flux      driven by a 

temperature difference 

 

 

 



Fourier’s law of Heat Conduction 

• Heat flux      driven by a 

temperature difference 

 

 

 

• Proportional to magnitude 

of temperature gradient 



Fourier’s law of Heat Conduction 

• Taylor expansion in gradients of T and u 

 

 

 

 

 



Fourier’s law of Heat Conduction 

• Taylor expansion in gradients of T and u 

 

 

 

 

 
Fourier’s law is first 
term in expansion 



• Taylor expansion in gradients of T and u 

 

 

 

 

• Only temperature gradient and strain cross term is 

non-zero to 1st order 

 

Beyond Fourier’s law of Heat Conduction 



Discrete molecules in continuous space 

• Molecular position evolves continuously in time 

• Position and velocity from acceleration 

 

 

 

Acceleration obtained from forces 

• Governed by Newton’s law for an N-body system 

• Point particles with pairwise interactions only 
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Molecular Dynamics 



Stick-slip 

and 

temperature 

jumps near 

walls 

Liquid 

structure 

causes 

viscosity 

and heat 

conduction 

Average behaviour 

reproduces 

hydrodynamics 

(coloured by 

velocity) 

Molecular Dynamics 



Molecular Dynamics – Complex Walls and Fluids 

Oil, water and textured surface 

Stick-slip 

near walls 

Liquid 

structure 

causes 

viscosity 

Wall 

Texture 

Molecules 

of arbitrary 

complexity 



Molecular Dynamics – Shocks and Multi-Phase 

Shockwave Droplet Formation 

Nucleation Contact line 



MD Computing 

• Force Calculation 

• All pairs simulation uses local cell and neighbour lists to reduce 

the N2 calculation to order N 

 

 

 

 

 

• Move particles (leapfrog in time) 



MD Computing 

Localisations lends itself to parallel computing using MPI 

• Spatial decomposition employed 

• Halo cells (ghost molecules) are used to link adjacent 

regions 
 

 

 

 

 

 

Halo exchange of variable amounts of data 

• MPI_Send 

• MPI_Probe and MPI_Recv 

 



NEMD - Tethering and Thermostatting 

• Non Equilibrium Molecular Dynamics (NEMD) is the study 

of cases beyond thermodynamic equilibrium, with: 

• Temperature gradients 

• Flow of fluid (e.g. Couette or Poiseuille flow) 

• We induce temperature gradients and flows 

• Thermostats (e.g. Nosé Hoover) 

• Remove heat from system 

• Tethered molecules 

• (An)harmonic spring to tether site 

• With sliding 

• Slide site and (optionally) molecules 



Molecular Dynamics - Averaging 

Refine 

• Density in a cell 

• Momentum in a cell 

• Temperature in a cell 



• Consider the pointwise energy equation 

 

 

 

 

 

 

Continuum vs. Discrete 

• Based on the continuum hypothesis 

• Describes fields 

• Valid at every point in space 

• Uses the calculus 



Irving and Kirkwood (1950) 

The Dirac delta  
infinitely high, 

infinitely thin peak 
formally equivalent 
to the continuum 

differential 
formulation  

BUT 
No molecule is ever 
exactly at a point 



Integrating the Dirac Delta 

● Much better to write the equations in integrated form 

 

 

● Integrating the Dirac delta function exactly provides a box car 

function (two Heaviside functions) 

– Consider the 1D case 



The Control Volume Functional 

● In three dimensions this integral gives a cube 

● In words 



Derivative yields surface fluxes 

 (Method of Planes) 

● Taking the derivative gives flux over the surface of the cube 

 

 

 

 

● Vector form defines six surfaces 

 

 

● Or in words 



• Integrate to get the control volume energy equation 

 

 

 

 

 

 

Control Volume Form 



• Or can be expressed in terms of surface fluxes 

 

 

 

 

 

 

Control Volume (surface flux) Form 



Key Points 

• Molecular dynamics captures the full structure of a 

fluid and models complex non-equilibrium behaviour 

• Continuum differential equations are problematic in 

MD as they result in a  Dirac delta function 

• Integrated form is better, and the integral of the 

Dirac delta function provides a useful function 

• This function is used to measure the heat flux in an 

MD system as, 

• Volume Average 

• Surface Flux - Method of Planes (MOP) form 



TEMPERATURE-DRIVEN FLOW 
Section 2 



Fourier’s law of Heat Conduction 

• Heat flux      driven by a 

temperature difference 

 

 

 

• Proportional to magnitude 

of temperature gradient 



Fourier’s law of Heat Conduction 



Fourier’s law of Heat Conduction 

• Thermostat tethered walls 

to different temperatures 

 

• Linear temperature 

gradient between walls 

 

• We need a way of 

measuring      from MD 



Measuring Heat Flux in MD 

• Consider the energy equation 

 

 

 

 

 

 



Pressure (Stress) in an MD Simulation 

• Pressure definition in a dense molecular system 

• Kinetic part due to fluctuations 

• Configurational part due to liquid structure 

Kinetic 

theory part 
Momentum due 

to average of 

molecules 

crossing a plane 

and returning  

Configurational 

part 
Inter-molecular 

bonds act like the 

stress in a 

stretched spring 



• Consider the energy equation 

 

 

 

 

 

 

Measuring Heat Flux in MD 



Volume Average Heat Flux 

Kinetic 

 

 

 

 Configurational 

 

• Total = Kinetic + Configurational 



Surface (MOP) Heat Flux 

Kinetic 

 

 

 

 

Configurational 

 

 

 

 

• Total = Kinetic + Configurational 



Measuring Heat Flux in MD 

Kinetic 

Configurational 

• Total = Kinetic + Configurational 



Fourier’s law of Heat Conduction 

• Heat flux      driven by a 

temperature difference 

 

 

 

• Using heat flux and 

temperature gradient,  



Fourier’s law of Heat Conduction 

 

• Run over a range of 

different density 

channels 

 

 

• MD shows good 

agreement with 

experimental results 



Fourier’s law of Heat Conduction 

 

• Run over a 

range of 

different 

temperatures 

 

• Linear variation 

as a function of 

temperature 

 

 



Fourier’s law of Heat Conduction 

• Using simple fits to both curves we get Fourier’s 

coefficient in terms of density and temperatures 



SHEAR-DRIVEN (COUETTE) FLOW 
Section 3 



Couette Flow 

• Shear flow driven by walls 

 

 

 

 

• Walls are thermostatted 

 

 

 

 

 

 



Couette Flow 

• Shear flow generates heat 

 

 

 

 

• Walls are thermostatted 

 

 

 

 

 



Couette Flow 

• Shear flow generates heat 

 

 

 

 

• Insert Fourier’s law 

 

 

 

 

 

 



• Shear flow generates heat 

 

 

 

 

• Walls are thermostatted giving a 

parabolic temperature profile 

 

 

 

Couette Flow 



Couette Flow 



Couette Flow 

• Heat flux      driven by a 

temperature difference 

 

 

• Use heat flux and temperature 

gradient, we could evaluate, 

 

 

• But missing the strain-rate 

coupling predicted by theory… 



• Taylor expansion in gradients of T and u 

 

 

 

 

• Only temperature gradient and strain cross term is 

non-zero to 1st order 

 

Beyond Fourier’s law of Heat Conduction 



• Taylor expansion in gradients of T and u 

 

 

 

 

• Only temperature gradient and strain cross term is 

non-zero to 1st order 

 

Beyond Fourier’s law of Heat Conduction 



Beyond Fourier’s law of Heat Conduction 

• Taylor expansion in gradients of T and u 

 

 

 

 

• Only temperature gradient and strain cross term is 

non-zero to 1st order 

 



Beyond Fourier’s law of Heat Conduction 

• Strong shear flow generates  

 heat flux in the flow    direction 

 

 

 

• An extra term in addition to 

Fourier’s coefficient 

 

 

 

 



Heat Flux Components 

• Total = Kinetic + Configurational 

Kinetic 



• Fitting to measured MD velocity and temperature  

• Velocity to straight line  

• Temperature to parabolic  

• Derivative obtained from these fits 

• Correction for density stacking 

Fitting MD Channel to Get Coefficients 



Fitting MD Channel to Get Coefficients 



Recall Fourier’s law of Heat Conduction 

• Run over a range of 

different density 

channels 

 

 

 

 

• Fourier’s law shows 

good agreement with 

experimental results 



• Run over a range of 

different density 

channels 

 

 

 

 

• Fourier’s law shows 

good agreement with 

experimental results 

Beyond Fourier’s law of heat conduction 

• Additional coefficients experimentally testable 



Range of Strain Rates 

• Run over a range of systems with varying  

 • Strain rate  

• Density 

• Temperature 

varies 

depending on 

these values 

• Use Fourier’s 

law from part 2 



Coefficients Vs. Strain Rate 

Parabolic fit in 

Strain rate 

Fourier’s law 

from intercept 



• Run over a range of 

different density 

channels 

 

 

 

 

• Fourier’s law shows 

good agreement with 

experimental results 

Beyond Fourier’s law of heat conduction 

• Additional coefficients experimentally testable 

Crosses from fit 

to strain 



Vector Plot of Heat Flux 

• Heat flux opposite direction to flow 



Proposed Mechanism 

• Consider the Radial Distribution function 

1D 2D 



Proposed Mechanism 

• Shearing distorts the molecular structure 

 

 

 

 

 

 

 

 

     Unsheared RDF           Sheared RDF 



Conclusions 

• Molecular dynamics captures the full structure of a 

fluid and allows non-equilibrium heat flux 

measurements 

• In temperature driven flow, values for Fourier’s law 

coefficient match experiments 

• Applying a shear flow results in strain-temperature 

couplings  

• A heat flux occurs in the direction of flow 

• Coefficients measured over a range of densities 

could be compared to experiments 

 



Summary 

• Introduction 

• Heat Flux with Fourier’s law and beyond 

• Molecular Dynamics 

 

• Two Cases 

• Temperature-Driven Flow  

• Shear-Driven (Couette) Flow 

 



Questions 

• Any Questions? 



Fourier’s law of Heat Conduction 

 

• Run over a 

range of 

different 

temperature 

channels 

 

• Linear variation 

as a function of 

temperature 

 

 



Fourier’s law of Heat Conduction 

• Using simple fits to both curves, we can predict 

Fourier’s coefficient for density and temperatures 



Predictions from Both Systems 

• Fourier’s law from system 1 



Beyond Fourier’s law of Heat Conduction 

• We need to measure heat flux in 

• The parallel (   ) direction 

• The wall-normal (   ) direction 

• Define a volume to measure the 

heat flux either 

• Inside the volume 

 

• Over the surfaces 



Channel Dimensions 

• The MD channels Ly=15.8, Lwall=4, Ltherm=2 

• Lx and Lz large for statistics ~half a million molecules 



Integrating the Dirac 
delta functional gives 
a combination of 
Heaviside functionals, 
which can: 

• Be mathematically 
manipulated to give 
fluxes and forces 

• Be implemented 
directly in MD 
codes 

• Be linked to the 
continuum control 
volume. 



The Control Volume Functional 

● The Control volume functional is the formal integral of the Dirac 

delta functional in 3 dimensions (3D top hat or box car function) 

● In words 



The Control Volume Functional 

● The Control volume functional is the formal integral of the Dirac 

delta functional in 3 dimensions (3D top hat or box car function) 

● Replace molecules with line of inter - 

molecular interaction 



● The Control volume function is the integral of the Dirac delta 

function in 3 dimensions 

 

 

 

 

 

 

● Length of interaction inside the CV 

 

 72 

The Control Volume Functional 



Volume Average Heat Flux 

Kinetic 

 

 

 

 Configurational 

 

• Total = Kinetic + Configurational 



Derivative yields surface fluxes and stresses 

● Taking the Derivative of the CV function 

 

 

 

 

● Vector form defines six surfaces 

 

 

● Or in words 



• Taking the Derivative of the CV function 

 

 

 

 

 

• Surface fluxes over the top and bottom 

surface 

 

 

Derivative yields surface fluxes and stresses 



Surface (MOP) Heat Flux 

Kinetic 

 

 

 

 

Configurational 

 

 

 

 

• Total = Kinetic + Configurational 


