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1 Introduction

In these notes, the governing equations of molecular dynamics and continuum
fluid dynamics are introduced. The mathematical link between the two are
discussed in the context of matching reference frames, spatial and temporal
averaging and definition of equivalent densities, momenta and stresses between
both systems.

2 Molecular Dynamics

A molecular dynamics system consists of a number of discrete molecules (N),
where each molecule i is located at a point in continuous space denoted by
positional vector ri with velocity vector ṙi. Each molecule in the domain is
followed and its evolution is calculated as a function of time - a Lagrangian
framework for each molecule. The initial position and velocity of every molecule
is the required initial state. Using Newton’s second law it should (in principle)
be possible to obtain any future state of the N -body system.

2.1 Governing Equations

In its simplest form, MD involves solving Newton’s law for each molecule i of
the N -molecule system,

mir̈i = Fi (1)

where mi is the mass of molecules i and r̈i its acceleration. The force Fi is
calculated by adding the contribution from its interaction with the other N − 1
molecules in the system box. The force on molecule i is given by Fi = −∇Φ(r),
where the potential Φ is a function of all the relative molecular positions only.
The potential Φ can be expressed as a series of interactions between atomic
pairs, triplets, etc,

Φ(r1, r2, . . . , rN ) =
N∑
i=1

Φ(ri) +
N∑
i=1

N∑
j>i

Φ(ri, rj) +
N∑
i=1

N∑
j>i

N∑
k>j

Φ(ri, rj , rk) + . . .

(2)

where ri, rj and rk are the positions of molecules i, j and k respectively. The
Φ(ri) is a body term which represents an external field, while higher order
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terms represent the interactions between two and higher numbers of molecules.
The inclusion of pairwise and higher molecular interactions mark the departure
from the theory of dilute gas. The greater the density of a fluid, the more terms
required from Eq. (2) to model that fluid accurately. A common assumption
for molecular dynamics is that the potential, Φ, is dependent on external fields
and pair interactions only,

Φ(r1, r2, . . . , rN ) ≈
N∑
i=1

Φ(ri) +
N∑
i=1

N∑
j>i

Φ(ri, rj)≡
N∑
i=1

Φi +
N∑
i,j

Φij . (3)

In the interest of being concise, the double sum has been written using a single
sum, where i, j denote all pairs and the molecular indices used in the potential’s
position dependence are expressed by subscripts so Φ(ri, rj)≡Φij . The forces
are then calculated from fij = −∂/∂rijΦ, with rij = ri − rj and fiext =
−∂/∂riΦ so that, the resulting form of Newton’s law is,

mir̈i = Fi =
N∑
j 6=i

fij + Fiext. (4)

A common and simple approach is to represent the pairwise potential field using
the Lennard-Jones potential (Rahman, 1964), which is commonly used to model
liquid argon, but is actually a good representation of more complex fluids,

Φ(rij) = 4ε

[(
`

rij

)12

−
(

`

rij

)6
]
, |rij | ≤ |rc|. (5)

Φ(rij) = 0 , |rij | ≥ |rc|, (6)

Although the Lennard-Jones potential describes the interaction of pairs of
molecules, it also shows very good agreement to experimental data for real
systems which have two and greater molecular interactions (Allen & Tildesley,
1987). This is because Φ in Eqs. (5) and (6) is now an effective pair potential
whose parameters incorporate, in a mean field sense, the three body and higher
order terms which are formally absent. It therefore represents a good balance
between simulation efficiency and accuracy.

In Eq. (5), ` is the length scale of the molecular system, usually the atomic
diameter and ε is a constant specifying the strength of atomic interaction. The
term with an exponent of 12 represent the repulsion which becomes stronger as
the two atoms move together. The term with the exponent of 6 is the attraction
and is greater than repulsion only when rij > 21/6. The effect of the potential
drops off rapidly with distance. For computational reasons, the calculation is
often truncated when rij > rc, a cutoff distance. Instead of an ‘all pairs’ system
with all molecules interacting, the interactions are local and each molecule is
only affected by its immediate neighbours. It is assumed the effects of the
potential for rij > rc are insignificant.

Typically, the molecular representation is non-dimensionalised using length
scale `, mass m and energy ε (Rapaport, 2004), resulting in the equation of
motion 7 being in terms of these MD units,

r̈i = 48
N∑
j 6=i

(
r−12
ij − 1

2
r−6
ij

)
rij . (7)
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Therefore, the variables in the above equation are non-dimensionalised by the
molecular parameters.

2.2 Statistical Mechanics

The aim of this section is to introduce the mesoscopic framework which links
the discrete microscopic and the continuum macroscopic descriptions.

A molecular system can be described in three dimensions in terms of three
molecular positions r(t) and three momenta p(t) for every one of theN molecules
at a time t. A convenient framework to consider this system is a 6N dimensional
phase space in which each combination of molecule position and velocity has a
unique value. Consider a probability function f which describes how likely a
given point in phase space is to contain a molecule.

f = f(r1, r2, ..., rN ,p1,p2, ...,pN , t). (8)

This can be normalised to unity over the whole of phase space,∫
· · ·

∫
6N

f(r1, r2, ..., rN ,p1,p2, ...,pN , t)dr1dp1...drNdpN = 1, (9)

which, in this form, represents the canonical ensemble formulation of statistical
mechanics. It is based on the idea of an average over an arbitrary number
of independent molecular systems (an ensemble). This average is used as a
probability f of finding a molecule at a point in phase space. In other words,
for a given r and p how likely it is to find a molecule with these properties in
any of the ensemble of different systems. This is called a mesoscopic system as
it is not based on the macroscopic continuum hypothesis and does not follow
individual microscopic discrete molecules. The requirement is that a statistically
significant number of molecules exist across the arbitrary number of systems.
The evolution in time of f is governed by the Liouville equations of statistical
mechanics. This is derived in an analogous way to the conservation equations
of fluid mechanics but using a volume in phase space (Evans & Morriss, 2007),

∂f

∂t
=

N∑
i=1

[
Fi ·

∂f

∂pi
− pi

mi
· ∂f

∂ri

]
. (10)

The Liouville equation in the form of Eq. (10) contains all the complexity of the
averaged MD systems, including the internal structure. The Liouville equation
can be simplified to obtain the Boltzmann equation by assuming a statistical
model of pair collisions (a truncation of the BBGKY hierarchy (Succi, 2001)).
The key difference between the equation obtained by Boltzmann and a MD
approach comes from replacing the all pairs calculation in MD with the as-
sumption of uncorrelated collisions. This means that although both approaches
model the streaming and collision of molecules (albeit statistically vs. explic-
itly), the Boltzmann equation does not model the microscopic structure of the
fluid. For this reason, the Boltzmann equation, especially in the form of the lat-
tice Boltzmann method, is easily applied to macroscopic flows. The Boltzmann
equation can also be shown to yield the Navier-Stokes and other continuum
conservation equations through low Knudsen number expansion (Chapman &
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Cowling, 1970). However, there has been limited success applying Boltzmann
based equations to problems modelling smaller scales. The use of mean field the-
ory where an N -molecule system is approximated as one molecule with a force
applied to model the N − 1 other molecules cannot capture the full underlying
complexities of a dense fluid. It is for this reason that molecular dynamics is es-
sential in capturing the effects of microscopic phenomena and, through coupling
to the continuum, the effect on the macroscopic flow properties.

For a property α, the expectation value of α can be obtained by evaluating
the inner product of Eq. (9) with the probability function defined by Eq. (8),〈
α; f

〉
≡
∫

· · ·
∫

6N

α(r1, .., rN ,p1, ..,pN )f(r1, .., rN ,p1, ..,pN , t)dr1dp1..drNdpN ,

(11)

where angled bracket notation 〈α; f〉 is introduced to define the ensemble aver-
age. Here α is any dynamic variable expressed as a function of position and
velocity (although not time explicitly). Assuming phase space is bounded, the
evolution in time of the expected value of a property, α, is,

∂

∂t

〈
α; f

〉
=

N∑
i=1

〈
Fi ·

∂α

∂pi
+

pi

mi
· ∂α
∂ri

; f

〉
, (12)

which is obtained by Irving & Kirkwood (1950) from the Liouville Eq. (10).
This equation is the key to deriving the evolution in time of molecular proper-
ties. In a molecular dynamics simulation, which is the micro-canonical ensemble,
a property is found by averaging in time and space. Sufficient measurements
in time and space must be taken to ensure the results are statistically signifi-
cant and representative of the system. The ergodic hypothesis is used to link
the canonical ensemble, based on independent systems, to the micro-canonical
ensemble based on one system. That is, sufficient time must has passed for
the successive measurements being averaged to become uncorrelated (Allen &
Tildesley, 1987). The same result can be obtained in the micro-canonical molec-
ular simulation using.

〈
α; f

〉
≈ 1

∆t

t0+∆t∫
t0

α(r,p)dt ≈ 1

∆t

t0+∆t∑
t=t0

α(r,p), (13)

where the first equality follows from the ergodic hypothesis.
In this section, the microscopic molecular dynamics equations in terms of

Newton’s laws were outlined, followed by the variational principles of classical
mechanics. The mesoscopic statistical mechanical description was also intro-
duced which is an intermediate between the discrete system of molecular dy-
namics and continuum mechanics. The next section considers the macroscopic
continuum formulation of mechanics.

3 Continuum Fluid Dynamics

This section introduces the equations used in continuum fluid dynamics.

4



The continuum assumption states that the material being considered is con-
tinuous in space and time, allowing calculus to be freely applied. It is widely
assumed that the continuum assumption is reasonable given the length scales of
the problem are much larger than the mean free path of the individual molecules,
i .e. there are enough molecules in the smallest length scale that the material still
acts like a continuum. This continuum assumption underpins the vast majority
of engineering simulations.

3.1 Governing Equations

The continuum conservation of mass and momentum balance can be derived in
an Eulerian frame by considering the fluxes through a Control Volume (CV).
The mass continuity equation can be expressed as,

∂

∂t

∫
V

ρdV = −
∮
S

ρu · dS, (14)

where ρ is the mass density and u is the fluid velocity. The rate of change of
momentum is determined by the balance of forces on the CV,

∂

∂t

∫
V

ρudV = −
∮
S

ρuu · dS+ Fsurface + Fbody. (15)

The forces are split into ones which act on the bounding surfaces, Fsurface, and
body forces, Fbody. Surface forces are expressed in terms the pressure tensor,
Π, on the CV surfaces,

Fsurface = −
∮
S

Π · dS. (16)

The rate of change of energy in a CV is expressed in terms of fluxes, the pressure
tensor and a heat flux vector Q,

∂

∂t

∫
V

ρEdV = −
∮
S

[ρEu+Π · u+Q] · dS, (17)

which has been obtained by neglecting the term for the energy change due to
body forces.

In order to express the CV equations in differential form, the divergence
theorem is used This relates surface fluxes to the divergence within the volume,
e.g . for a variable A, ∮

S

A · dS =

∫
V

∇ ·AdV. (18)

which in the limit of an infinitesimal control volume (Borisenko & Tarapov,
1979) defines the differential form,

∇ ·A = lim
V→0

1

V

∮
S

A · dS. (19)

Therefore, taking the zero volume limit of the conservation of mass through a
control volume, Eq. (14), results in the differential continuity equation,

∂ρ

∂t
+∇β(ρuβ) = 0. (20)
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Index notation has been used with the Einstein summation convention. Sub-
script and bold notations are used interchangeably to describe tensors through-
out.

The differential momentum balance equation is obtained from the zero vol-
ume limits of the CV momentum balance equation Eq. (15),

∂ρuα

∂t
+∇β [ρuαuβ −Παβ ] + Fαext = 0. (21)

with surface forces, Fsurface, expressed in terms of pressure using Eq. (16).
Effects due to external forces Fαext (body forces, Fbody, at a point) are usually
not considered and will be neglected in the following treatment. Finally for
energy (E) conservation at a point is derived from Eq. (17) as,

∂

∂t
ρE= −∇β [ρEuβ +Παβuα +Qβ ] , (22)

The pressure tensor, Παβ , can be further subdivided into the equilibrium pres-
sure from kinetic theory, P , and solid mechanics concept of stress σαβ acting
on the control volume,

Παβ = −Pδαβ + σαβ , (23)

where δαβ is the Kronecker delta. The decomposition is arbitrary and it is
only the total stress tensor Παβ that has any physical meaning, as it satisfies
the definition of an infinitesimal force acting on an infinitesimal area (Evans
& Morriss, 2007). The term, σαβ , is the Cauchy stress widely measured in
solid mechanics. The pressure term, P , does not typically appear in the solid
mechanics formulation as the solid is assumed to be initially undeformed (gauge
of zero). In a fluid, P can vary throughout the domain. The convective term is
unique to liquids as it describes transport resulting from the actual movement
of fluid through the control volume.

The stress tensor can be expanded as a power series in strain rate. Generally
it is assumed to be a linear function of strain rate (not assuming this will
lead to the Burnett or super Burnett equations depending on the order of the
relationship). A fourth order tensor is the simplest linear relation between stress
and strain (i.e. a relation linking each of the 9 stress components linearly to
each of the 9 strain components needs 81 components).

σαβ = Cαβγζεγζ . (24)

The assumed symmetry of the stress and strain tensors (Cαβγζ = Cβαγζ and
Cαβγζ = Cαβζγ) along with the requirement that work done by deformation be
zero (Cαβγζ = Cγζαβ) allows the 81 components to be reduced . The following
relationship results between just second order tensors with only two unknown
coefficients, λ and µ,

Cαβγζ = λδαβδγζ + µ(δβγδαζ + δαγδβζ), (25)

The fluid is assumed to be physically and structurally isotropic meaning it can
only deform by shear and bulk deformation. The equation linking stress and
strain takes the form,

σαβ = λδαβεγγ + µ(εγζ + εζγ). (26)
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Using the definition of small strains for εαβ = ∇βuα +∇αuβ , the equation for
Παβ can be written (in vector notation) as,

Π = Pδ − µ(∇u+ (∇u)T −∇ · uδ)− λ∇ · uδ. (27)

The Stokes hypothesis relates the two co-efficients µ and λ which is exactly true
for a monatomic gas but a good approximation for most gases. The coefficient
µ is often called the shear viscosity coefficient and is the same form as the
one in Newton’s law of viscosity. The bulk viscosity coefficient is (λ − 2

3µ )
(Hoover, 1991), although some textbooks incorrectly describe λ itself as the
bulk viscosity. It is the bulk or compressional viscosity which is zero under
Stokes’ hypothesis, i.e. λ = 2

3µ. A bulk viscosity of zero is an approximation
not correct for fluids with internal structures (Gad-el Hak, 1995). Molecular
dynamics explicitly incorporates the effect of finite bulk viscosity.

Using the assumption of incompressibility, the continuity Eq. (20) reduces
to ∇ · u = 0 and Eq. (21) can be simplified to

∂u

∂t
+ (u ·∇)u = −1

ρ
∇P + ν∇2u, (28)

where u(x, t) is the fluid velocity and P (x, t) pressure, at each spatial position
x and time t. The fluid is assumed to have a uniform density ρ and viscosity
ν = ρ/µ. Non-dimensionalising using a length scale L, a characteristic velocity
U and time of U/L with the definition of the Reynolds number Re = UL/ν,
Eq. (28) becomes,

∂u

∂t
+ (u ·∇)u = −∇P +

1

Re
∇2u, (29)

where the variables shown are non-dimensional for the continuum scale.

4 Towards a Consistent Mathematical Frame-
work

This section outlines the mathematical relationship between the discrete frame-
work of molecular dynamics and the equations of continuum mechanics. First
the difference in reference frame used in the Eulerian fluid mechanics and the
many Lagrangian molecules is discussed. The link between these is provided by
the seminal work of Irving & Kirkwood (1950) through the Dirac delta func-
tional. Using the Dirac delta, a number of localised ‘state’ properties are defined
including density, momentum, temperature and energy. The time derivatives of
these state properties can be used to obtain the fluxes (again following Irving
& Kirkwood (1950)). The fluxes include advection of momentum (convection)
and the notion of the stress tensor in a molecular system. A consistent stress
definition is essential to flux coupling schemes, however, the exact definition of
the molecular stress is a controversial area. The various issues associated with
the molecular stress tensor are discussed in this section.

4.1 Lagrangian and Eulerian frameworks

Both the continuum and molecular systems are classical systems, entirely gov-
erned by Newton’s law. It should therefore be possible to express the time
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Continuum

d

dt

∫
V (t)

ρ(t)u(t)dV = Fs(t)

d

dt

N∑
i=1

pi(t) =
N∑
i,j

fij(t)

Molecular

Figure 1: An equivalent Lagrangian element for the continuum and discrete system
with corresponding forms of Newton’s law. An arbitrary fixed point r on the path
of evolution represents an infinitesimal Eulerian frame. The equations of motion in
the Eulerian frame are given by expressing the flow through this infinitesimal control
volume in the continuum or application of the Dirac delta function in the discrete
system.

evolution of both in an equivalent manner. This is achieved in this subsection,
by considering an arbitrary and equivalent Lagrangian element in both systems.
The link to the Eulerian formulation for both systems is then discussed.

Newton formulated his law based on the evolution of discrete objects, subject
to impressed forces 1. The equation resulting from Newton’s second law,

m
d2r

dt2
= F ,

relates a particle’s mass m and second temporal derivative of its position r to
the forces it experiences, F . The application of Newton’s law to a continuous
substance requires the division of that substance into arbitrary interacting re-
gions. These “discrete elements” are often called particles, although to avoid
confusion, this term is here reserved for discrete molecules and the term element
is used instead.

A Lagrangian continuum element is defined to be an arbitrary and fixed
quantity of continuous media with a time evolving volume V = V (t) contained
inside a bounding surface S. The temporal evolution of this volume and the
momentum inside is governed by the forces acting over its bounding surface Fs.
Figure 1 shows this continuum element and the form of Newton’s law which
governs its evolution.

In order to link the two, a similar element can be defined in the molecular
system, containing a fixed number of molecules N (c.f. the fixed quantity of
continuous media) and surrounded by a bounding surface S. The volume V =
V (t) of this molecular element is given by the shape enclosing the positions of
all N molecules and its evolution is governed by the sum of all inter-molecular
forces acting over the surface fij . Note by following an ‘element’ of molecules,
the sum over all i and j is the surface forces, as internal interactions between
molecules inside the element cancel (Newton’s 3rd law).

These two element in both system are equivalent; both advancing due to
Newton’s law, following a fixed collection of substance and evolving as a result

1“An impressed force is an action exerted upon a body, in order to change its state, either
of rest, or of moving uniformly forward in a right line.” Newton (1726) from definition IV,
page 3 in the translation by Motte (1729).
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of external forces due to interactions with substance outside the element. In
this form, the equations represent the Lagrangian formulation of mechanics (see
Figure 1), in which the evolution of a fixed quantity of substance is followed
through time. However, fluid mechanics is almost always written in the Eule-
rian reference frame, which considers the flow past a fixed point in space. For
this reason, the coupling strategies employed in the solid mechanics literature
(Curtin & Miller, 2003) are generally not applicable to fluid system. The con-
tinuum can be written in an Eulerian frame using Reynolds Transport Theorem
(Reynolds, 1903)

d

dt

∫
V

ρudV =

∫
V

∂ (ρu)

∂t
dV +

∮
S

(ρuu) · dS.

The use of the Dirac delta function provides a way to write the molecular systems
in an Eulerian framework. This is due to the property of the Dirac delta that,

h(r) =

∫ ∞

−∞
δ(ri − r)h(ri)dri, (31)

here, r is a location in space (of the Eulerian reference) and ri the location of
molecule i. Consider the point r in Figure 1, which includes molecules only as
they pass through point r. As the Dirac delta is defined only at a infinitesimal
position in space, the molecular system is effectively considered only at the
location r. Regardless of the shape or size of the element, the Dirac delta only
considers the properties as they move past r. The analysis of Irving & Kirkwood
(1950) provides the link between the ensemble averaged microscopic variables
and the macroscopic density, momentum and energy at a fixed Eulerian point
in space as discussed in the next subsection. The reader is referred to Irving
& Kirkwood (1950) for a full justification of the Dirac delta function as a link
between macroscopic and mesoscopic descriptions.

4.2 State Variable, Density Velocity and Temperature

In this subsection, an equivalent definition for state properties (density, momen-
tum, energy and temperature) is obtained for a fixed Eulerian point in space
in both the molecular and continuum system. Recall from section 2.2, that the
expectation value of any variable α = α(r1, ..., rN ,p1, ...,pN , t) is given by the
inner product with the probability density function,〈

α; f

〉
=

∫
· · ·

∫
6N

αf(r1, ..., rN ,p1, ...,pN , t)dr1dp1...drNdpN .

By letting α be the Dirac delta function, Irving & Kirkwood (1950) provided
the link between the Lagrangian and Eulerian descriptions. The macroscopic
density definition follows from α =

∑N
i=1 miδ(ri − r), giving,

ρ(r, t)≡
〈 N∑

i=1

miδ(ri − r); f

〉
. (32)

This returns the possible configurations of the system in phase space which
satisfy the criterion that a molecule is located at a point r. This is the definition
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of average density of mass located at r for an ensemble of molecular systems.
The momentum density at a point in space is similarly defined by,

ρ(r, t)u(r, t)≡
N∑
i=1

〈
piδ(ri − r); f

〉
, (33)

where the momentum of molecule i is pi = miṙi. Note that pi is the mo-
mentum in the laboratory frame, and not the peculiar value pi, which excludes
the macroscopic streaming term at the location of molecule i, u(ri), (Evans
& Morriss, 2007). The laboratory frame and peculiar momentum are related
through,

pi ≡mi

(
pi

mi
− u(ri)

)
. (34)

The energy density at a point in space is defined by

ρ(r, t)E(r, t)≡
N∑
i=1

〈
eiδ(ri − r); f

〉
, (35)

where the energy of the ith molecule is defined as the sum of the kinetic energy
and the inter-molecular interaction potential φij ,

ei ≡
p2i
2mi

+
1

2

N∑
j 6=i

φij .

It is implicit in this definition that the potential energy of an interatomic inter-
action, φij , is arbitrarily divided equally between the two interacting molecules,
i and j. The factor of 1/2 in the last term of the above equation is therefore
included to avoid double counting. Related to the energy is the definition of
temperature, which can be defined at a point in terms of the peculiar momen-
tum,

T (r, t) =
1

3kB(N − 1)

N∑
i=1

〈
p2i
mi

δ(ri − r); f

〉
. (36)

The time evolution of these state properties provides the fluxes in the next
section.

4.3 Momentum Fluxes and the Pressure Tensor

The fluxes are obtained by evaluating the time evolution of state properties
using the Irving & Kirkwood (1950) time evolution equation (12). The link to
the equations in this section will be obtained in the limiting case of zero volume.
The reader is also referred to the original work of Irving & Kirkwood (1950) for
the full derivation of the equations presented in this section.

The time evolution of mass is obtained by taking the time derivative of both
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sides of Eq. (32) and applying Eq. (12),

∂

∂t
ρ(r, t) =

∂

∂t

N∑
i=1

〈
miδ(ri − r); f

〉

= − ∂

∂r
·

N∑
i=1

〈
piδ(ri − r); f

〉
= − ∂

∂r
· ρ(r, t)u(r, t), (37)

which results in the divergence of momentum given in Eq. (33). This circum-
vents the process of defining the momentum in Eq. (33) and also results in
a form of momentum which is not unique (the gauge can be set by adding an
arbitrary constant).

The time evolution of momentum is obtained by taking the time derivative
of both sides of Eq. (33) and applying Eq. (12),

∂

∂t
ρ(r, t)u(r, t) =

∂

∂t

N∑
i=1

〈
piδ(ri − r); f

〉
=

∂

∂r
· ρ(r, t)u(r, t)u(r, t) + ∂

∂r
·Π(r, t),

which results in the molecular flux and stress at a point in space. The resulting
stress tensor, known as the IK stress tensor, is of the form,

Π =
N∑
i=1

〈
mi

(
pi

mi
− u

)(
pi

mi
− u

)
δ(ri − r) +

1

2

N∑
j 6=i

fijrijOijδ(ri − r); f

〉
.

(38)

The Oij term is the Irving & Kirkwood (1950) operator resulting from a Taylor
expansion of two Dirac delta functionals, i .e.

δ(ri − r)− δ(rj − r) = −rij ·
∂

∂r
Oijδ(ri − r),

where the so-called IK operator is,

Oij =

(
1− 1

2
rij ·

∂

∂ri
+ . . .+

1

n!
(−rij ·

∂

∂ri
)n−1 + . . .

)
. (39)

It is instructive to compare the continuum momentum equations Eq. (21) (with
Π = PI − σ) and the mesoscopic Eq. (38) obtained by Irving & Kirkwood
(1950),

∂

∂t
ρu+∇ · ρuu = ∇ · [ PI − σ ]

N∑
i=1

〈
∂

∂t
piδ(ri − r); f

〉
+∇ · ρuu = ∇ ·

N∑
i=1

〈
pipi

mi
δ(ri − r) +

1

2

N∑
j 6=i

fijrijOijδ(ri − r); f

〉
.

It is clear from this comparison that time evolution of momentum is equal to
the divergence of kinetic pressure P , Cauchy stress σ and fluid convection ρuu.
The IK pressure of Eq. (38) is a formally exact definition valid at a point in
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space. It can be simplified to yield the kinetic theory (ideal gas) pressure as
well as the virial pressure (Parker, 1954).

The kinetic pressure is obtained by assuming a homogeneous dilute gas (with
φij(r) = 0) in a closed volume V (Chapman & Cowling, 1970); Eq. (38)
simplifies to,

KT

Π =
1

V

N∑
i=1

〈
pipi

mi
; f

〉
, (40)

which is the ideal gas kinetic theory definition of the pressure tensor. Note that
a single value is taken for the whole system and there is no local u (pi = pi).
With no internal interactions, the pressure tensor is entirely due to the ‘stress
like’ movement of momentum by microscopic fluctuations. This also appears
to be consistent with the common definition of P in the continuum literature
(Potter & Wiggert, 2002).

The virial pressure is obtained from Eq. (38) in a closed volume V and
taking only the first term in the IK operator of Eq. (39), known as the IK1
approximation, so that δ(ri − r) = 1 and Oijδ(ri − r) = 1. The result is the
well-known tensorial form of the virial pressure (Parker, 1954),

V IRIAL

Π =
1

V

N∑
i=1

〈
pipi

mi
+

1

2

N∑
i 6=j

fijrij ; f

〉
.

The virial form of pressure is the most widely used in the molecular dynam-
ics literature due to its simplicity. However, the virial can only be used to
provide a single pressure tensor for an entire isolated system. Using the virial
pressure locally is incorrect, as interactions with the surrounding fluid are not
included (Tsai, 1978). This is a consequence of neglecting terms of higher order
in Eq. (39). As a result, the effects of local inhomogeneity in the fluid are lost.
Away from equilibrium a localised description is required and the full Eq. (39)
expression must be retained.

The IK form of pressure in Eq. (39) is formally exact and equal to the
pointwise continuum description. The Dirac delta function is defined in the
infinitely thin, infinitely large limit which is exactly the same limit in which
the continuum infinitesimal is defined. However, in practice the Dirac delta
function cannot be implemented in a molecular system as no molecule will ever
be exactly at point r. Therefore, some relaxation of the Dirac delta is required
and a number of possibilities are discussed in the literature.

4.4 Energy Equations

The final type of flux expression is for energy, which includes the definition of
the stress tensor. The molecular equivalents of various terms from the energy
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evolution, Eq. (42), can be defined as follows,

ρEu =

N∑
i=1

〈
eiu δ (r − ri) ; f

〉
, (41a)

Π · u =

N∑
i=1

〈pi pi

mi
− 1

2

N∑
j 6=i

fijrijOij

 · u δ (r − ri) ; f

〉
, (41b)

Q =
N∑
i=1

〈
ei

pi

mi
δ (r − ri)−

1

2

N∑
j 6=i

pi

mi
· fijrijOijδ (r − ri) ; f

〉
,

where the peculiar momentum and energy are defined by,

pi

mi
≡
(
pi

mi
− u

)
; ei ≡

p2i
2mi

+
1

2

N∑
j 6=i

φij and ei ≡
p2i
2mi

+
1

2

N∑
j 6=i

φij .

The energy equation at a point in space is therefore,

∂

∂t
ρE= −∇ ·

N∑
i=1

〈
eiu δ (r − ri) +

pi pi

mi
− 1

2

N∑
j 6=i

fijrijOij

 · u δ (r − ri)

+ei
pi

mi
δ (r − ri)−

1

2

N∑
j 6=i

pi

mi
· fijrijOijδ (r − ri) ; f

〉)
,

(42)

It is possible to take the IK1 form of the energy, with Oijδ(r − ri) = 1 from
Eq. (39) and averaging over the Dirac delta function,

ρEu =

N∑
i=1

〈
eiu

〉
, (43a)

Π · u =

N∑
i=1

〈pi pi

mi
− 1

2

N∑
j 6=i

fijrij

 · u
〉
, (43b)

Q =
N∑
i=1

〈
ei

pi

mi
− 1

2

N∑
j 6=i

pi

mi
· fijrij

〉
, (43c)

this is the most commonly used form of energy equation in the coupling liter-
ature due to it simplicity. Many of the issues associated with the definition of
the stress tensor also apply to the energy equations and the heat flux Q.

The equations presented in this section provide a direct mathematical link
between state properties: mass, momentum, temperature and energy in the con-
tinuum and molecular system. The linking of the flux properties, i .e. convection,
energy advection, pressures and heat flux have also been discussed.
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