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Introductions to Computational Fluid Dynamics (CFD)
- Assumptions and modelling paradigm

— Introduction to numerical solutions

Hands on 1

Introductions to Molecular Dynamics (MD)
- Assumptions and modelling paradigm

— Introduction to numerical solutions

Coupled Simulation
Hands on 2

Slides and hands-on code at
edwardsmith.co.uk/content/RS-DFID.zip 2
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Continuum Fields

e The continuum hypothesis refers to continuous fields in space
e Assumes so many particles that a substance is continuous.

* In practice, one meter cube of air has 10> molecules so works
very well in almost any case on interest

* A typical MD simulation may have ~10* molecules which is
nanometer scale - bigger than micrometer is prohibitive

e You should always use the simplest/cheapest model that
captures the physics of interest

* A continuum system will reproduce the behaviour of countless
molecules for relatively little computation effort 5
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The Navier-Stokes Equation

Describes the flow of continuum fluid

1
ou Fu-Yu=—-VYP+vViu
ot 0

\ ) \ ) \ ) \ )
Y Y ) 4 ) 4
Unsteady Convection Pressure Diffusion
Term Term Term Term

A non-linear partial-differential velocity and pressure equation

Cannot solve directly and not proven to have existence and
smoothness (Clay prize with $1,000,000 reward)

We will aim to solve numerically today
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Summary of Assumptions

* Newtonian framework (non-relatavistic and classical)

* For constitutive laws
— Stress is a linear function of Strain rate
- Isotropy of fluid
— Stoke's hypothesis
— Viscosity coefficient is homogeneous
— Usually Incompressiblity assumed as well

* Structure of the molecules replaced with a continuous mean
field (the continuum hypothesis)
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Definition of a Continuous Function

A
f(@)
>
¢ x
, Also € — O definition
f is continuous if and only if the limit lim f(il?) exists which is more formal.
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Definition of a Derivative

flz + Az) — f(z)

Gradient ~

Ax 10
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Definition of a Derivative

x xr+ Az
flz+ Az) — f(x)

Better with smaller Az Gradient ~
A.CU 11
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Definition of a Derivative

. + Ax) — f(x
Exactin Limit Az —0 — = lim flz z) — f(@)
dx Ax—0 Ax 5
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Numerical Solution to Differential Equations

e To solve numerically, consider the definition of the derivative

df _ | flatAr) — f()
dr  Azr=0 Ax

If we make delta x small we can approximate the derivative
by taking two points which are arbitrarily close

df _ flz+Ax) -~ (@)
doe Az

Aaj 13
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Numerical Solution to Differential Equations

* First order derivatives
df e+ Dr) - f(o)
dx Ax
e Second order derivatives
Pf _ fl@+Az) — 2f(x) + f(z - Ax)
de? (Ax)?
* We can introduce short-hand notation for this

fla+Azx) = f(x) _ fiv1 — /i

Ax Ax

fle+Ax) —2f(x) + fle — Az) _ fig1 —2fi+ fia
(Az)? h (Az)?
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Numerical Solution to Differential Equations

* First order derivatives
a _fim—
dx Az
e Second order derivatives
d*f  fix1 —2fi+ fiza

de? (Ax)?
« Which we can write as code (rearranged to get i+1 value)
df . |
. —aqa f(i+1) = f(1) + a*dx
dx
“f_, f(i+1) = 2%(0) - f(i-1) + b*dx**2

dl’2 o 15
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Numerical Solution to Differential Equations

. So If we know the value at f, we can get the value atf  a
small distance, delta x, away

df
— =a fir1 = Ji + alAx
dx
fi Ji+1
| |
<>
Ax
. Once we know the value at f_ , we can get the value at at
f_,andsoon f; fir1 fivo
| | | |
< >

Ax 16
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Boundary Conditions

* We need to specify one value, called a boundary condition,
In order to solve this

d
_f:a fir1 = Ji + alAx
dx
boundary _ fi  Jin
condition I | |
Ax

« Boundar condition at fO determines all value at at fi, fi+1, f

and so on
fi fi+1 fi—|—2

i+2

boundary - TE—
condition Ay .
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Functions of Time and Space

e Consider the unsteady diffusion equation

ou 0% u

Ry i u = u(x,t)

ot Ox?

« \We have both a first order time derivative (unsteady term)

du  u(z,t+ At) —u(z,t)  u™ —ul

dt At At

e and the second order space derivative (diffusion term)

dPu  uf —2ul +ul

Y
([

dx? (Azx)?

18



¢ | Brunel
a2 | University
London

Functions of Time and Space

» Take each value at time t and calculate the field at the next
time
t+1 t+1 t+1

t t t
AM U Ujpq Ujqo

-

Ax

¢ bt
Uiyq — 2U; + Uiy

(Az)

't =l + Aty

19
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Functions of Time and Space

» Take each value at time t and calculate the field at the next
time
t+1 t+1 t+1
w,  Ujyq Ui
| | | |
t t t
At T Uy Uiy Ujgo

-

Ax

e For simplicity, we use periodic boundaries

h n

Copy Domain to
make periodic

20
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Full Navier Stokes (NS) in 1D

e Solving the Navier Stokes proceeds in the same way

ou ou 1 0P ou? Ou

| — | _
- U m— — -V, — — 0
ot ox o Ox Ozr?’ Oz
/ —— —v—"
t+1 ut Pressure Mass
i i Term Continuity
At
t(,.1 t
\ | uz’(uz’+1 — Uu;_q)
M (A’CE) ’L—I—l 2u -+ U
Unsteady - ~" /
Term (ZXLU)
Convection - ~ 7/
Term
Diffusion

Term 21
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Full Navier Stokes (NS) in 1D

« However we have two unknowns (u and P)

ou ou 1 0P ou? Ou

| — | . _
- U — T - UV ——= — — O
ot 0x p Ox 0x?’ Oz

Yi —W % W % T

. Al At At

) £ . : :
Split time evolution into two stages and
Unsteady L. .
Term use mass continuity equation as second

equation to solve for pressure -



Solving for Pressure
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e Split time integration into two stages

wial
Apeaisun

Convection Diffusion
Term Term
A A
[ \ [ 5 \
uf — ul ou  Ou
— U 1%
At ox Ox?
ultt — ~ 10P
At p Ox
\ )
Y
Pressure

Term

23
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Solving for Pressure

e Split time integration into two stages and use mass

continuity equation

Convection Diffusion
Term Term
A A
r + f \ f 5 \
ur — u; ou ou
S = —U U
—|
L ;‘g* < At 8:1? 5’332
3 2 t+1
< ou; ou; 9
L Ox  Ox _ _1 0P
At p 0x?
\ )
Y
Mass Pressure
ContinUity Term
=0

24
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Solving for Pressure
e Split time integration into two stages and use mass
continuity equation o
Convection Diffusion
Term Term
A A
r + f N\ 5 \
ur — ul ou ou
S - L= —u %
22 At Ox 012
3 2 <
< 1 Ouf 10°P
. At 0z p Oz
—— Piy1 — 2P+ P
Pressure (AZE‘)Q

Term

25
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Full Navier Stokes Solver in 1D

ou ou

1 0P

ou’ Ou

at "o T

clear all

close all

%Setup everything

Lx = 2.0; nx = 44; nt = 300;

dt = 0.0025; nu = 0.1;

dx = Lx/(nx-1.);

u = zeros(nx+1,1); p = zeros(nx,1);
u(10:20) = -1.0;

%iterate through time

for n=1:nt
%Advection and diffusion
| = [2:nx]";
un = u;
u(i)=u(i)-dt*(un(i).*(un(i+1)...

-un(i-1))/(2*dx));

u(i) = u(i) + dt*nu*(un(i+1) ...

-2.0*un(i)+un(i-1))/dx"~2;

p O

- ——= =0

%Solver for Pressure
forit = 1:100
pn = p;
I = [2:nx-2]";
b = -0.5*(dx)*(u(i+1)-u(i-1));
p(i) = 0.5*(p(i+1)+p(i-1))+b;
%Periodic Boundary conditions
p(1) = p(end-1); p(end) = p(2);
if (max(abs(pn-p)) < le-4)
it
break
end
end
%Apply pressure
u(i) = u(i) - 2.xdt*(p(i+1)-p(i))/dx;
%Periodic Boundary conditions
u(l) = u(end-1); u(end) = u(2);
end 26
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Hands-on Session

* 1D Navier Stokes Equatio
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Two Dimensions and Partial Derivatives

o  Consider a
/ .
6 T constaTt fun_ctlon of two
Yy variables
4
I f=f(z,y)
0
—4 (’9:1: ‘y constant
oy > * 5’f
0 0 x constant
T T 4 4%y 0y

28
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Partial Differential Equations in 2D

» To describe the change in fields, we use partial differential
equations which vary in space (2D here), for example:

’f L f
ox2  Oy?
 But we will use numerical solutions, written here in index
notation which shows the “stencil” ’
Of _ fiv1j—2fij+ fii1 bt
Ox? (Ax)? R : o
=1, vy e+l
O°f _ fijrr—2fi;+ fij
Oy? (Ay)? e

31
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Boundary Conditions

* Notice that if we solve this equation, we use points either side
 Then we move to the next point
« We start from the edge of our domain (boundary)
 These boundary values must be specified and determine the
solution we get from solving Laplace's equation
Top

left ¢ e o e e Right
® o o o o

@) @) @) @) o

SOttorr) 34
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Boundary Conditions

* Notice that if we solve this equation, we use points either side

 Then we move to the next point

« We start from the edge of our domain (boundary)

* These boundary values must be specified and determine the
solution we get from solving Laplace's equation

Updated -

o @)
Jin—— 00—
o o
Left o e o o Right

SOttorr) 35
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Boundary Conditions

* Notice that if we solve this equation, we use points either side

 Then we move to the next point

« We start from the edge of our domain (boundary)

* These boundary values must be specified and determine the
solution we get from solving Laplace's equation

Updated - -

J11

Updated/'v °

f 2,1 Left o ® Right

SOttorr) 36



v — v Brunel'
=22 | University
London

Boundary Conditions

* Notice that if we solve this equation, we use points either side

 Then we move to the next point

« We start from the edge of our domain (boundary)

* These boundary values must be specified and determine the
solution we get from solving Laplace's equation

Updated 5 e
Ji1
Updated e
f2,1 Left .
Updated
f3,1 ® o o o o

SOttorr) 37
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Boundary Conditions

* Proceed until all 9 internal values (in black) are updated
Updated fi1.1 fo.1 fa1 fi2 foo f32 fi3 Jo3 [f3.3

* We then repeat the process again starting from these
updated values

Left o—o—9 —¢—o Right

SOLtor 38
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Boundary Conditions

e |teration should proceeds until a solution is reached,

convergence check:

9

2

i=1 j=1 i=1 j=1

9 9 9
Previous Iteration
> fii=D > I <e

e Iteration must be turned on in Excel (options) or explicitly
iterated using a loop in MATLAB

© e o € o
r—9—p——g—0
o——o——9———o0 Right
*—=o—0—<¢ O
@ O o o e

SOLtor 39



22 | University

.4 | Brunel |
W London

Boundary Conditions

f=0

Wall

Copy Domain to
make periodic

40
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Partial Differential Equations in 2D
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* Notice that if we solve this equation, we use points either side

 Then we move to the next point

C5

f =0 L Fd ]

Vi e Z
B

1

R
1

D

1

E

1

F

1

=((B5+D5)/$E$14 + (C4+CB)/$E$15)*0.5%5K514

G

1

0.894

0.89359

0.89352

0.894

0.894

0.893

0.893

0.792

0.791529

0.79145

0.791

0.791

0.791

0.791

0.694

0.693553

0.69847

0.693

0.693

0.693

0.693

¥0.598

0.59

8

0.598

0.598

0.598

B

0.504

0.503451

0.50828

0.503

0.503

0.503

0.504

41
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Hands-on Session

* 1D Navier Stokes Equation
* Laplace's Equation in 2D
- MATLAB - Iterates to convergence

— Excel (Note iterations are turned on)

Slides and hands-on code at
edwardsmith.co.uk/content/RS-DFID.zip

42
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Functions of Time and Space

e Consider unsteady diffusion
ou 0%u  0%u

— IL
ozx?  Oy?

— = u=ulxr,y,t
p (@, y,t)
« \We have both a first order time derivative (unsteady term)

du  u(z,t+At) —u(z,t)  utt—uf

~ — 1 (/

dt At At

e and the second order space derivative (diffusion term)

2 t . t t 2
du  Uipry — 2 Uiy Ou Ui — 205+ U

da? (Ax)? oy (Ay)?

43
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Functions of Time and Space

» Take each field at time t and calculate the field at the next
time

At !

—|— d Initial field is

important over

‘ . short times
Ax
t t t t ot t
Gt Ay | Y1 T 25 + u;_q L Wi 245 + Uz
u T (B)? (Ay)?

44
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* 1D Navier Stokes Equation
* Laplace's Equation in 2D
- MATLAB - lterates to convergence

— Excel (Note iterations are turned on)
* Unsteady Diffusion Equation in 2D

- MATLAB — copies made each loop

— Excel — A copy for each timestep

Slides and hands-on code at
edwardsmith.co.uk/content/RS-DFID.zip

45
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Navier Stokes in 2D

e Split time integration into two parts and use mass equation
to get pressure

IET]
Apeajsun

A

Convection Diffusion
Term Term
A A
. [ \ f \
k
U. — U
’ L — —u-Vu—vViu
At
1 5 Poisson
KV ‘U, = —V P~ equation -
t P RHS is
—— Laplace’s
b Equation and
ressure
Term we need to

iterate
46
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Navier Stokes - Limitations and Extensions

Only single-phase flows, additional models needed for
Interface, nucleation, contact lines and phase change

No model for energy, a separate equation if required

High speed flows (high Mach number) require
compressibility to be modelled

Turbulence requires very large scale simulations or
additional models (RANS, LES)

Flow through porous or granular material more complex

Non-Newtonian fluid require complex visco-elastic
behaviour through additional models

47
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Adding in Multi-Phase Flow

1

* |n order to model
boiling, we need to be »
able to track the |

location of liquid and N ﬂmm
vapour regions |

0.5

0.9

0.4

* The velocity flow field s Flow Field
from the NS equations 0
will then drive the Vapour
liquid/vapour evolution .

0 0.2 0.4 0.6 0.8 1

 Molecular Dynamics will take care of the nucleation (as we

will see in the next section)
48
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Adding in Multi-Phase Flow

e Not a trivial extension, various methods exists, e.g.
e VVolume of Fluid
* Interface tracking (see later Tryggvason* examples)
e Levelset
 Here we use the simple approach of Tryggvason*, solve for
density propagation to track both liquid/vapour densities

Op _ _Opu
ot  Ox

« With artifical diffusion added for numerical stability reasons
dp  Jpu 0% pu
ot oz | M0 os2
* Molecular Dynamics will take care of the nucleation (as we
will see in the next section) 49
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Adding in Multi-Phase Flow

 Here we use the simple approach of Tryggvason*, solve for
density propagation to track both liquid/vapour densities

dp  Opu 0% pu
o Ox al Ox2

We evolve the density field in time and use with u* to solve
the incompressible pressure field

1 1
— V. -ul=_-V?P
At Pi

e The boundary conditions for density are set to large values
for simplicity, as density appears in denominator of the
pressure equation the boundary terms are almost zero so



Other Numerical Methods
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* The Navier-Stokes Equation

1
My Vu=—1VP+
ot 0

* Finite Difference Method

ou, L U1 — U1 z! 1
ox 20z

* Finite Volume Method (used in Tryggvason code)

(;

1+ 1

Q/pudV:—j{puu-dS—%H-dS )
ot Jy s s

==

* Other methods: finite element, spectral methods, smooth

particle hydrodynamics, lattice Boltzmann, ...

51
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1D Navier Stokes Equation
* Laplace's Equation in 2D
- MATLAB - Iterates to convergence

— Excel (Note iterations are turned on)

Unsteady Diffusion Equation in 2D

- MATLAB — copies made each loop
- Excel — A copy for each timestep

* A minimal CFD solver including multi-phase flow

- Based on minimal code of Tryggvason*
- See DNS-Solver.pdf file for full details -



