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● Introductions to Computational Fluid Dynamics (CFD)
– Assumptions and modelling paradigm

– Introduction to numerical solutions

● Hands on 1

● Introductions to Molecular Dynamics (MD)
– Assumptions and modelling paradigm

– Introduction to numerical solutions

● Coupled Simulation
● Hands on 2

Plan

Slides and hands-on code at 

edwardsmith.co.uk/content/RS-DFID.zip
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● The continuum hypothesis refers to continuous fields in space
● Assumes so many particles that a substance is continuous.

● In practice, one meter cube of air has 1025 molecules so works 
very well in almost any case on interest

● A typical MD simulation may have ~104 molecules which is 
nanometer scale - bigger than micrometer is prohibitive

● You should always use the simplest/cheapest model that 
captures the physics of interest 

● A continuum system will reproduce the behaviour of countless 
molecules for relatively little computation effort

Continuum Fields 
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The Navier-Stokes Equation

UnsteadyUnsteady
TermTerm

Convection Convection 
TermTerm

PressurePressure
TermTerm

Diffusion Diffusion 
TermTerm

● Describes the flow of continuum fluid

● A non-linear partial-differential velocity and pressure equation 
● Cannot solve directly and not proven to have existence and 

smoothness (Clay prize with $1,000,000 reward)
● We will aim to solve numerically today
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• Newtonian framework (non-relatavistic and classical)

• For constitutive laws
– Stress is a linear function of Strain rate
– Isotropy of fluid
– Stoke's hypothesis 
– Viscosity coefficient is homogeneous
– Usually Incompressiblity assumed as well

● Structure of the molecules replaced with a continuous mean 
field (the continuum hypothesis)

Summary of Assumptions
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Definition of a Continuous Function

 is continuous if and only if the limit                      exists
Also              definition
which is more formal.
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Definition of a Derivative
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Better with smaller 

Definition of a Derivative
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Exact in Limit

Definition of a Derivative



13

Numerical Solution to Differential Equations

● To solve numerically, consider the definition of the derivative

If we make delta x small we can approximate the derivative 
by taking two points which are arbitrarily close 
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Numerical Solution to Differential Equations

● First order derivatives

● Second order derivatives

● We can introduce short-hand notation for this
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Numerical Solution to Differential Equations

● First order derivatives

● Second order derivatives

● Which we can write as code (rearranged to get i+1 value)

f(i+1) = 2*f(i) - f(i-1) + b*dx**2 

f(i+1) = f(i) + a*dx 
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Numerical Solution to Differential Equations

● So if we know the value at f
i
, we can get the value at f

i+1
 a 

small distance, delta x, away

● Once we know the value at f
i+1

, we can get the value at at 

f
i+2

, and so on
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Boundary Conditions

● We need to specify one value, called a boundary condition, 
in order to solve this

● Boundar condition at f
0
 determines all value at at f

i 
, f

i+1
, f

i+2
 

and so on

boundary 
condition

boundary 
condition
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Functions of Time and Space

● Consider the unsteady diffusion equation

● We have both a first order time derivative (unsteady term)

● and the second order space derivative (diffusion term)
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Functions of Time and Space

● Take each value at time t and calculate the field at the next 
time
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Functions of Time and Space

Copy Domain to 
make periodic

● Take each value at time t and calculate the field at the next 
time

● For simplicity, we use periodic boundaries
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Full Navier Stokes (NS) in 1D

UnsteadyUnsteady
TermTerm

Convection Convection 
TermTerm

PressurePressure
TermTerm

Diffusion Diffusion 
TermTerm

MassMass
ContinuityContinuity

● Solving the Navier Stokes proceeds in the same way
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Full Navier Stokes (NS) in 1D

UnsteadyUnsteady
TermTerm

● However we have two unknowns (u and P)

Split time evolution into two stages and 
use mass continuity equation as second 
equation to solve for pressure 
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Solving for Pressure

U
n

stead
y

U
n

stead
y

Term
Term

PressurePressure
TermTerm

● Split time integration into two stages

Convection Convection 
TermTerm

Diffusion Diffusion 
TermTerm
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Solving for Pressure

U
n

stead
y

U
n

stead
y

Term
Term

PressurePressure
TermTerm

● Split time integration into two stages and use mass 
continuity equation

Convection Convection 
TermTerm

Diffusion Diffusion 
TermTerm

MassMass
ContinuityContinuity

=0=0
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Solving for Pressure

U
n

stead
y

U
n

stead
y

Term
Term

PressurePressure
TermTerm

● Split time integration into two stages and use mass 
continuity equation

Convection Convection 
TermTerm

Diffusion Diffusion 
TermTerm
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Full Navier Stokes Solver in 1D

clear all
close all
%Setup everything
Lx = 2.0; nx = 44; nt = 300;
dt = 0.0025; nu = 0.1;
dx = Lx/(nx-1.);
u = zeros(nx+1,1); p = zeros(nx,1);
u(10:20) = -1.0;
 
%iterate through time
for n=1:nt  
    %Advection and diffusion 
    i = [2:nx]';
    un = u;
    u(i)=u(i)–dt*(un(i).*(un(i+1)…
                                   -un(i-1))/(2*dx));
    u(i) = u(i) + dt*nu*(un(i+1) … 

-2.0*un(i)+un(i-1))/dx^2;
               

    %Solver for Pressure 
    for it = 1:100
        pn = p;
        i = [2:nx-2]';
        b = -0.5*(dx)*(u(i+1)-u(i-1));
        p(i) = 0.5*(p(i+1)+p(i-1))+b;
        %Periodic Boundary conditions
        p(1) = p(end-1);  p(end) = p(2);
        if (max(abs(pn-p)) < 1e-4)
            it
            break
        end
    end
    %Apply pressure
    u(i) = u(i) - 2.*dt*(p(i+1)-p(i))/dx;
    %Periodic Boundary conditions
    u(1) = u(end-1);  u(end) = u(2);  
end

Also Python jupyter notebook at 
edwardsmith.co.uk/content/Fluid_Dynamics_On_A_Line
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● 1D Navier Stokes Equation

Hands-on Session

Slides and hands-on code at 

edwardsmith.co.uk/content/RS-DFID.zip
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● Consider a 
function of two 
variables

Two Dimensions and Partial Derivatives
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Partial Differential Equations in 2D

● To describe the change in fields, we use partial differential 
equations which vary in space (2D here), for example:

● But we will use numerical solutions, written here in index 
notation which shows the “stencil”
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● Notice that if we solve this equation, we use points either side 
● Then we move to the next point
● We start from the edge of our domain (boundary)
● These boundary values must be specified and determine the 

solution we get from solving Laplace's equation
TopTop

RightRightLeftLeft

BottomBottom

Boundary Conditions
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● Notice that if we solve this equation, we use points either side 
● Then we move to the next point
● We start from the edge of our domain (boundary)
● These boundary values must be specified and determine the 

solution we get from solving Laplace's equation
TopTop

RightRightLeftLeft

BottomBottom

Boundary Conditions

Updated
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● Notice that if we solve this equation, we use points either side 
● Then we move to the next point
● We start from the edge of our domain (boundary)
● These boundary values must be specified and determine the 

solution we get from solving Laplace's equation
TopTop

RightRightLeftLeft

BottomBottom

Boundary Conditions

Updated

Updated
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● Notice that if we solve this equation, we use points either side 
● Then we move to the next point
● We start from the edge of our domain (boundary)
● These boundary values must be specified and determine the 

solution we get from solving Laplace's equation
TopTop

RightRightLeftLeft

BottomBottom

Boundary Conditions

Updated

Updated

Updated
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● Proceed until all 9 internal values (in black) are updated

● We then repeat the process again starting from these 
updated values 

TopTop

RightRightLeftLeft

BottomBottom

Boundary Conditions

Updated
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● Iteration should proceeds until a solution is reached, 
convergence check:

● Iteration must be turned on in Excel (options) or explicitly 
iterated using a loop in MATLAB 

RightRightLeftLeft

BottomBottom

Boundary Conditions
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Boundary Conditions

Wall

Wall

Copy Domain to 
make periodic
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● Notice that if we solve this equation, we use points either side 
● Then we move to the next point

Partial Differential Equations in 2D

`
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● 1D Navier Stokes Equation
● Laplace's Equation in 2D

– MATLAB – Iterates to convergence

– Excel (Note iterations are turned on)

Hands-on Session

Slides and hands-on code at 

edwardsmith.co.uk/content/RS-DFID.zip
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Functions of Time and Space

● Consider unsteady diffusion

● We have both a first order time derivative (unsteady term)

● and the second order space derivative (diffusion term)
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Functions of Time and Space

● Take each field at time t and calculate the field at the next 
time
 

Initial field is 
important over 
short times



45

● 1D Navier Stokes Equation
● Laplace's Equation in 2D

– MATLAB – Iterates to convergence

– Excel (Note iterations are turned on)

● Unsteady Diffusion Equation in 2D

– MATLAB – copies made each loop

– Excel – A copy for each timestep

Hands-on Session

Slides and hands-on code at 

edwardsmith.co.uk/content/RS-DFID.zip
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Navier Stokes in 2D

U
n

stead
y

U
n

stead
y

Term
Term

PressurePressure
TermTerm

● Split time integration into two parts and use mass equation 
to get pressure

Convection Convection 
TermTerm

Diffusion Diffusion 
TermTerm

Poisson 
equation - 
RHS is 
Laplace's 
Equation and 
we need to 
iterate
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• Only single-phase flows, additional models needed for 
interface, nucleation, contact lines and phase change

• No model for energy, a separate equation if required

• High speed flows (high Mach number) require 
compressibility to be modelled

• Turbulence requires very large scale simulations or 
additional models (RANS, LES)

• Flow through porous or granular material more complex

• Non-Newtonian fluid require complex visco-elastic 
behaviour through additional models

Navier Stokes - Limitations and Extensions
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Adding in Multi-Phase Flow

● In order to model 
boiling, we need to be 
able to track the 
location of liquid and 
vapour regions

● The velocity flow field 
from the NS equations 
will then drive the 
liquid/vapour evolution

● Molecular Dynamics will take care of the nucleation (as we 
will see in the next section)

Vapour

liquid

Flow Field
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Adding in Multi-Phase Flow

● Not a trivial extension, various methods exists, e.g.
● Volume of Fluid
● Interface tracking (see later Tryggvason* examples)
● Levelset

● Here we use the simple approach of Tryggvason*, solve for 
density propagation to track both liquid/vapour densities

● With artifical diffusion added for numerical stability reasons

● Molecular Dynamics will take care of the nucleation (as we 
will see in the next section)

* www.nd.edu/~gtryggva/MultiphaseDNS/
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Adding in Multi-Phase Flow

● Here we use the simple approach of Tryggvason*, solve for 
density propagation to track both liquid/vapour densities

We evolve the density field in time and use with u* to solve 
the incompressible pressure field

● The boundary conditions for density are set to large values 
for simplicity, as density appears in denominator of the 
pressure equation the boundary terms are almost zero

* www.nd.edu/~gtryggva/MultiphaseDNS/
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• The Navier-Stokes Equation

• Finite Difference Method

• Finite Volume Method (used in Tryggvason code)

• Other methods: finite element, spectral methods, smooth 
particle hydrodynamics, lattice Boltzmann, …

Other Numerical Methods
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Hands-on Session

Slides and hands-on code at 

edwardsmith.co.uk/content/RS-DFID.zip
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● 1D Navier Stokes Equation
● Laplace's Equation in 2D

– MATLAB – Iterates to convergence

– Excel (Note iterations are turned on)

● Unsteady Diffusion Equation in 2D

– MATLAB – copies made each loop

– Excel – A copy for each timestep

● A minimal CFD solver including multi-phase flow

– Based on minimal code of Tryggvason*

– See DNS-Solver.pdf file for full details

Hands-on Session

* www.nd.edu/~gtryggva/MultiphaseDNS/

Slides and hands-on code at 

edwardsmith.co.uk/content/RS-DFID.zip


