Imperial College London

A Tutorial of Boiling Simulation using Coupled Molecular Dynamics and Computational Fluid Dynamics

Royal Society-DFID Africa Capacity Building Initiative 19th July Edward Smith

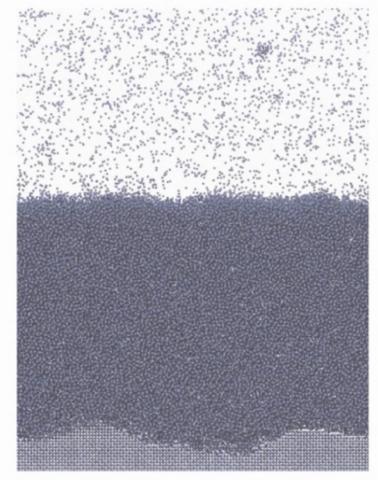
Plan

- Introductions to Computational Fluid Dynamics (CFD)
 - Assumptions and modelling paradigm
 - Introduction to numerical solutions
- Hands on 1
- Introductions to Molecular Dynamics (MD)
 - Assumptions and modelling paradigm
 - Introduction to numerical solutions
- Coupled Simulation
- Hands on 2

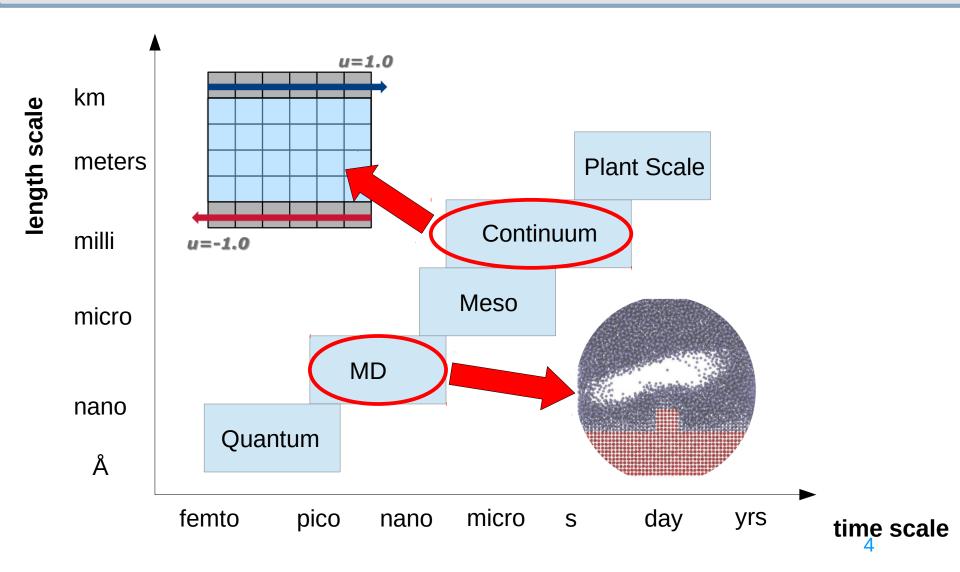
Slides and hands-on code at

edwardsmith.co.uk/content/RS-DFID.zip

Molecular Dynamics (MD)

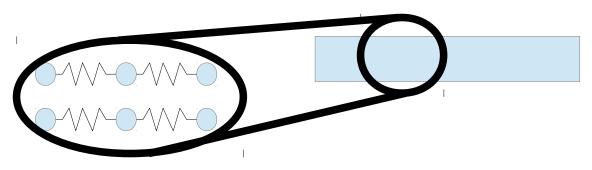


Scale Hierarchy



Continuum Fields

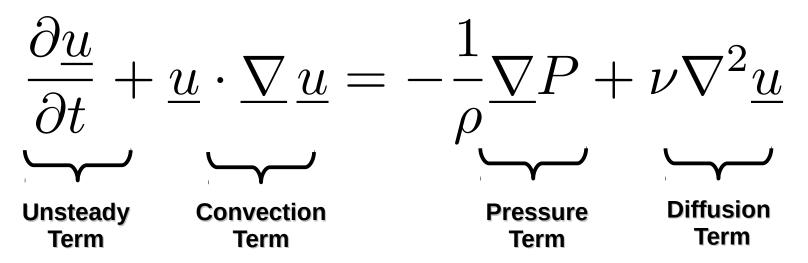
- The continuum hypothesis refers to continuous fields in space
- Assumes so many particles that a substance is continuous.



- In practice, one meter cube of air has 10²⁵ molecules so works very well in almost any case on interest
- A typical MD simulation may have $\sim 10^4$ molecules which is nanometer scale bigger than micrometer is prohibitive
- You should always use the simplest/cheapest model that captures the physics of interest
- A continuum system will reproduce the behaviour of countless molecules for relatively little computation effort

The Navier-Stokes Equation

• Describes the flow of continuum fluid

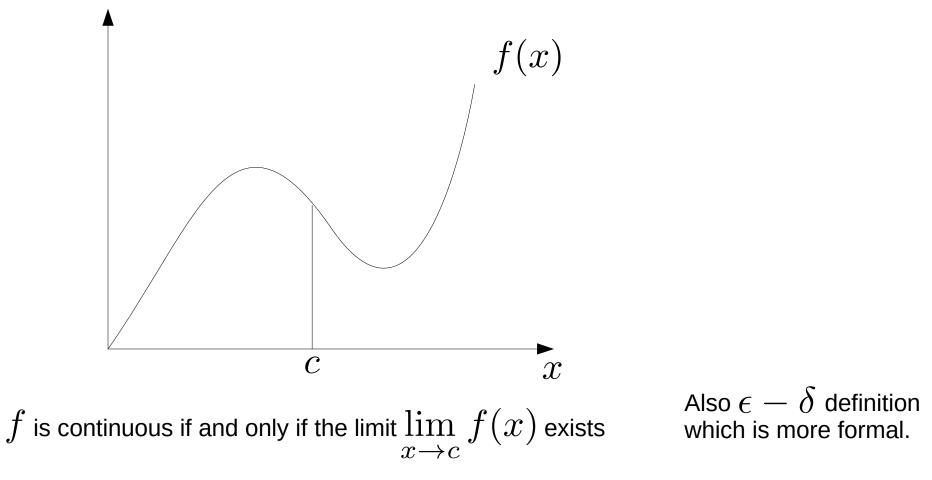


- A non-linear partial-differential velocity and pressure equation
- Cannot solve directly and not proven to have existence and smoothness (Clay prize with \$1,000,000 reward)
- We will aim to solve numerically today

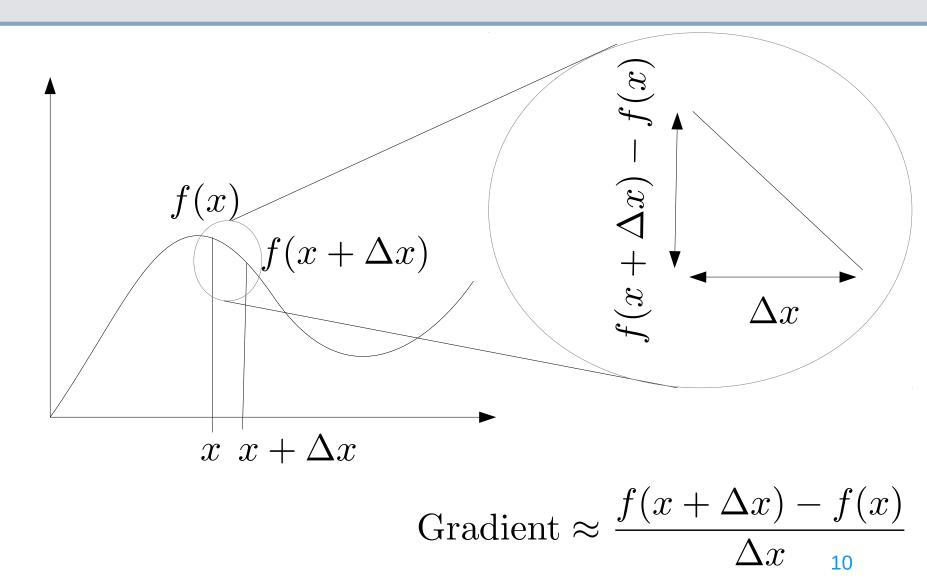
Summary of Assumptions

- Newtonian framework (non-relatavistic and classical)
- For constitutive laws
 - Stress is a linear function of Strain rate
 - Isotropy of fluid
 - Stoke's hypothesis
 - Viscosity coefficient is homogeneous
 - Usually Incompressiblity assumed as well
- Structure of the molecules replaced with a continuous mean field (the continuum hypothesis)

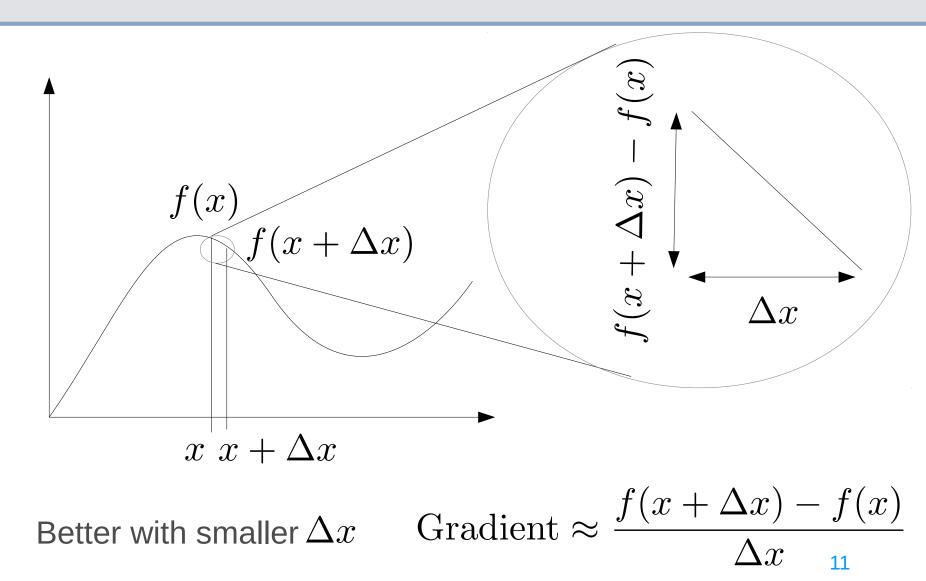
Definition of a Continuous Function



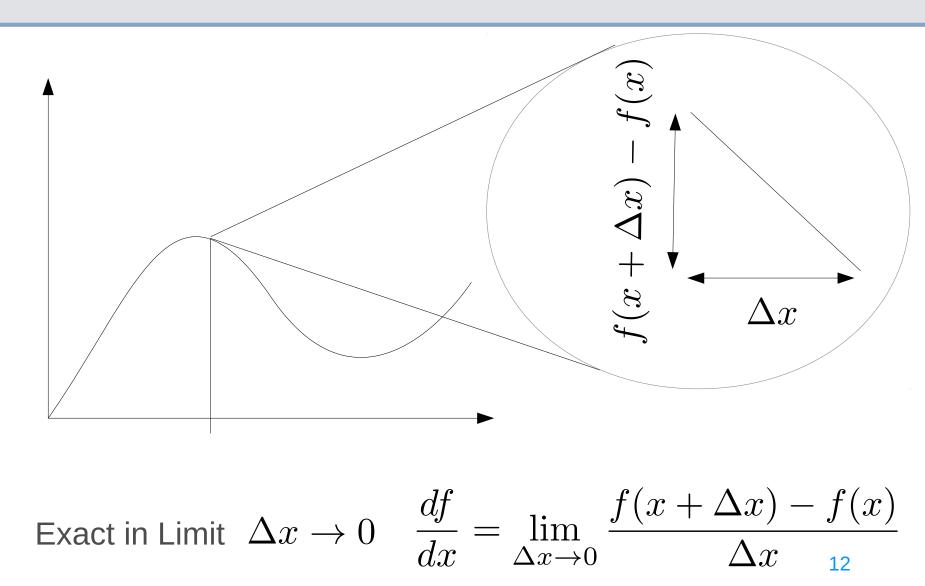
Definition of a Derivative



Definition of a Derivative



Definition of a Derivative



• To solve numerically, consider the definition of the derivative

$$\frac{df}{dx} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

If we make delta x small we can approximate the derivative by taking two points which are arbitrarily close

$$\frac{df}{dx} \approx \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$f(x) \quad f(x + \Delta x)$$

$$- \frac{1}{\Delta x}$$

• First order derivatives

$$\frac{df}{dx} \approx \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

• Second order derivatives

$$\frac{d^2f}{dx^2} \approx \frac{f(x + \Delta x) - 2f(x) + f(x - \Delta x)}{(\Delta x)^2}$$

• We can introduce short-hand notation for this

$$\frac{f(x + \Delta x) - f(x)}{\Delta x} \equiv \frac{f_{i+1} - f_i}{\Delta x}$$
$$\frac{f(x + \Delta x) - 2f(x) + f(x - \Delta x)}{(\Delta x)^2} \equiv \frac{f_{i+1} - 2f_i + f_{i-1}}{(\Delta x)^2}$$

• First order derivatives

$$\frac{df}{dx} \approx \frac{f_{i+1} - f_i}{\Delta x}$$

Second order derivatives

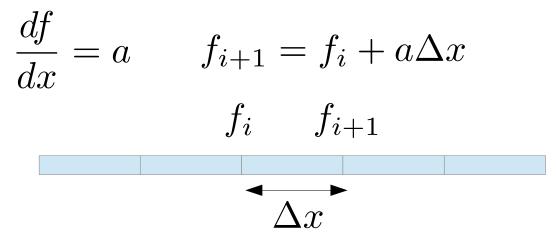
$$\frac{d^2 f}{dx^2} \approx \frac{f_{i+1} - 2f_i + f_{i-1}}{(\Delta x)^2}$$

• Which we can write as code (rearranged to get i+1 value)

$$\frac{df}{dx} = a \qquad f(i+1) = f(i) + a*dx$$
$$\frac{d^2f}{dx^2} = b \qquad f(i+1) = 2*f(i) - f(i-1) + b*d$$

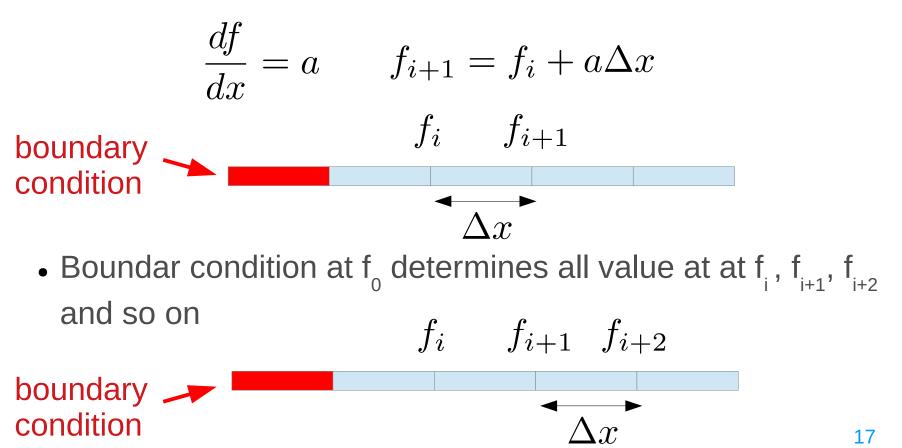
X**(

• So if we know the value at f_{i} , we can get the value at f_{i+1} a small distance, delta x, away



- Once we know the value at f_{i+1} , we can get the value at at f_{i+2} , and so on f_i f_{i+1} f_{i+2}

• We need to specify one value, called a boundary condition, in order to solve this



Functions of Time and Space

• Consider the unsteady diffusion equation

$$\frac{\partial u}{\partial t} = \nu \frac{\partial^2 u}{\partial x^2} \qquad \qquad u = u(x,t)$$

• We have both a first order time derivative (unsteady term)

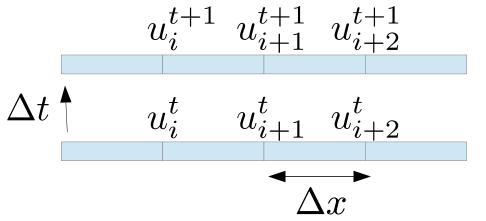
$$\frac{du}{dt} \approx \frac{u(x, t + \Delta t) - u(x, t)}{\Delta t} = \frac{u_i^{t+1} - u_i^t}{\Delta t}$$

• and the second order space derivative (diffusion term)

$$\frac{d^2u}{dx^2} \approx \frac{u_{i+1}^t - 2u_i^t + u_{i-1}^t}{(\Delta x)^2}$$

Functions of Time and Space

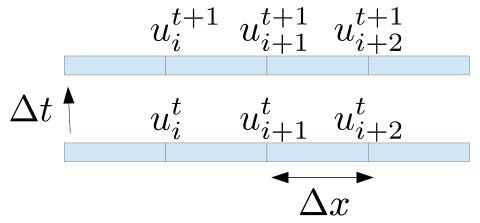
• Take each value at time t and calculate the field at the next time



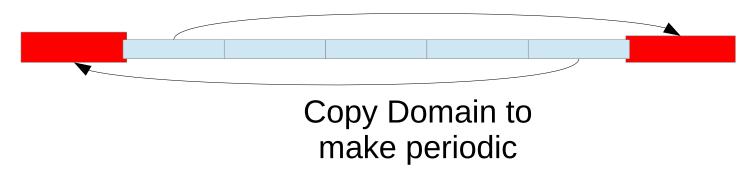
$$u_{i}^{t+1} = u_{i}^{t} + \Delta t \nu \left[\frac{u_{i+1}^{t} - 2u_{i}^{t} + u_{i-1}^{t}}{(\Delta x)^{2}} \right]$$

Functions of Time and Space

• Take each value at time t and calculate the field at the next time

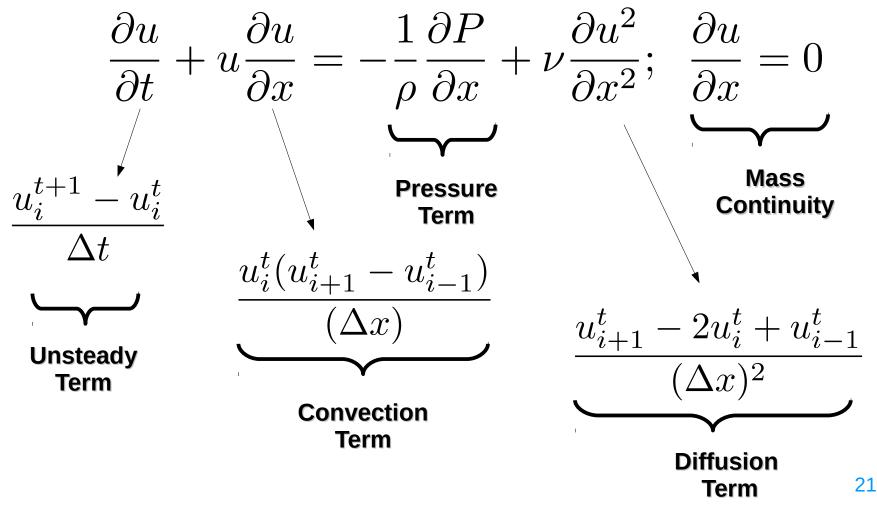


• For simplicity, we use periodic boundaries



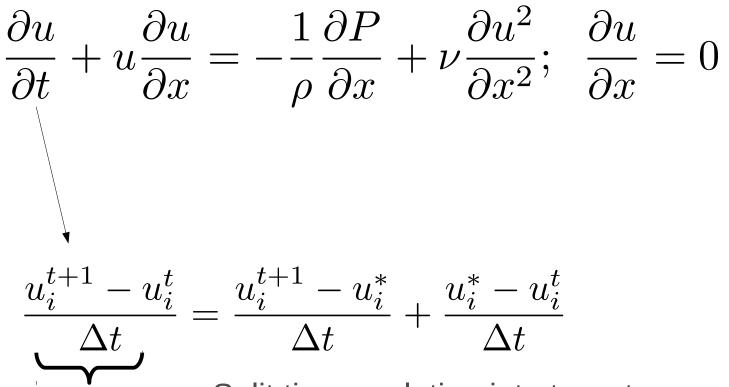
Full Navier Stokes (NS) in 1D

• Solving the Navier Stokes proceeds in the same way



Full Navier Stokes (NS) in 1D

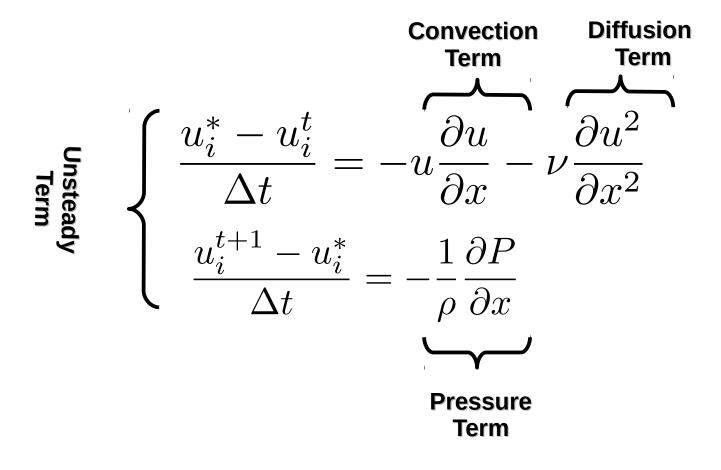
• However we have two unknowns (u and P)



Unsteady Term Split time evolution into two stages and use mass continuity equation as second equation to solve for pressure

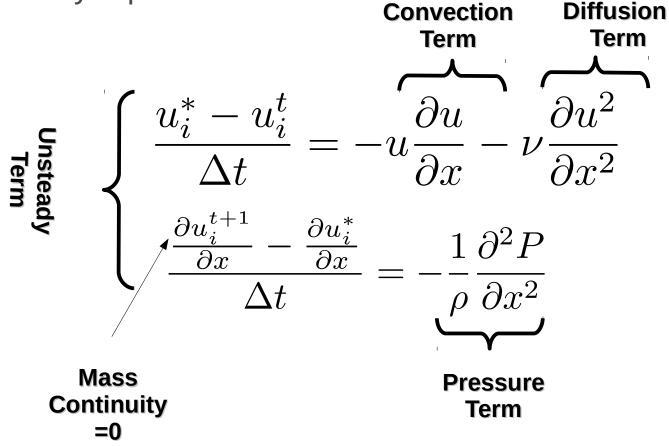
Solving for Pressure

• Split time integration into two stages



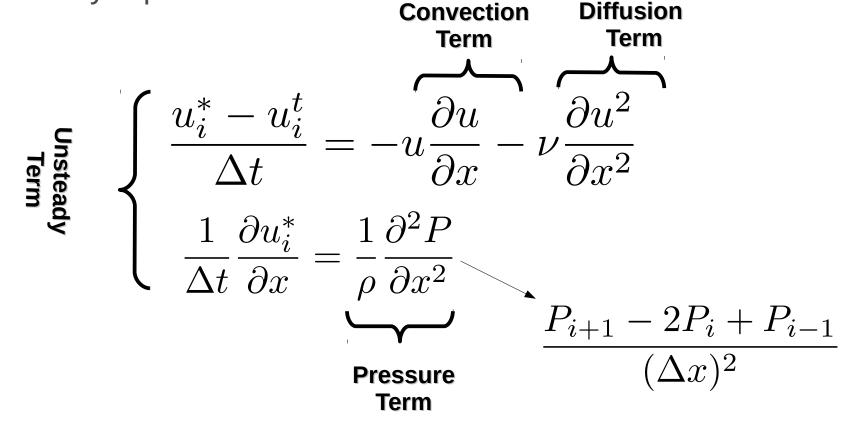
Solving for Pressure

• Split time integration into two stages and use mass continuity equation



Solving for Pressure

• Split time integration into two stages and use mass continuity equation



Also Python jupyter notebook at edwardsmith.co.uk/content/Fluid_Dynamics_On_A_Line

Full Navier Stokes Solver in 1D

 $u\frac{\partial u}{\partial x} = -\frac{1}{\rho}\frac{\partial P}{\partial x} + \nu\frac{\partial u^2}{\partial x^2}; \quad \frac{\partial u}{\partial x} = 0$ ∂u

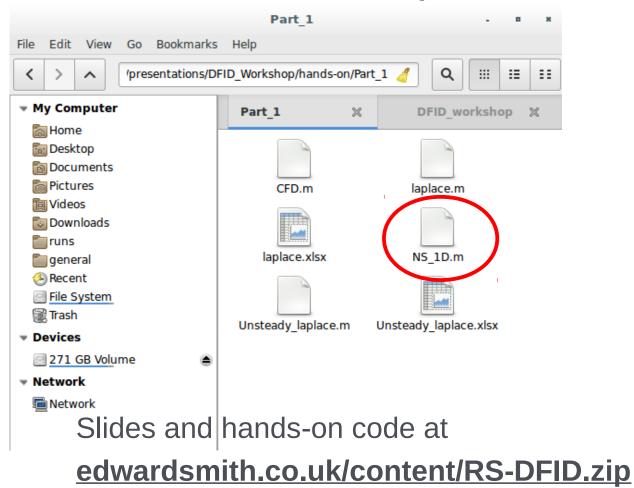
```
clear all
close all
%Setup everything
Lx = 2.0; nx = 44; nt = 300;
dt = 0.0025; nu = 0.1;
dx = Lx/(nx-1.);
u = zeros(nx+1,1); p = zeros(nx,1);
u(10:20) = -1.0;
```

```
%iterate through time
for n=1:nt
%Advection and diffusion
i = [2:nx]';
un = u;
u(i)=u(i)-dt^{*}(un(i).^{*}(un(i+1)...
-un(i-1))/(2^{*}dx));
u(i) = u(i) + dt^{*}nu^{*}(un(i+1)...
-2.0^{*}un(i)+un(i-1))/dx^{2};
```

%Solver for Pressure for it = 1:100pn = p;i = [2:nx-2]';b = -0.5*(dx)*(u(i+1)-u(i-1));p(i) = 0.5*(p(i+1)+p(i-1))+b;%Periodic Boundary conditions p(1) = p(end-1); p(end) = p(2);if (max(abs(pn-p)) < 1e-4)it break end end %Apply pressure u(i) = u(i) - 2.*dt*(p(i+1)-p(i))/dx;%Periodic Boundary conditions u(1) = u(end-1); u(end) = u(2);26 end

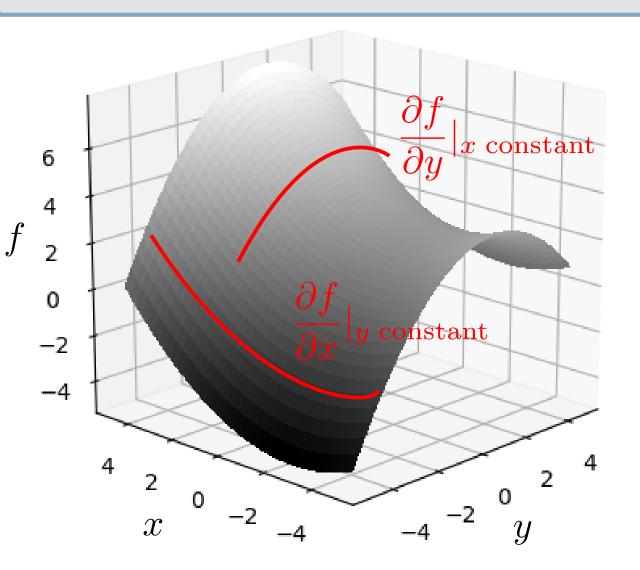
Hands-on Session

• 1D Navier Stokes Equation



27

Two Dimensions and Partial Derivatives



 Consider a function of two variables

$$f = f(x, y)$$

 $\frac{\partial f}{\partial x}|_{y \text{ constant}}$ $\frac{\partial f}{\partial y}|_{x \text{ constant}}$

31

Partial Differential Equations in 2D

• To describe the change in fields, we use partial differential equations which vary in space (2D here), for example:

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$$

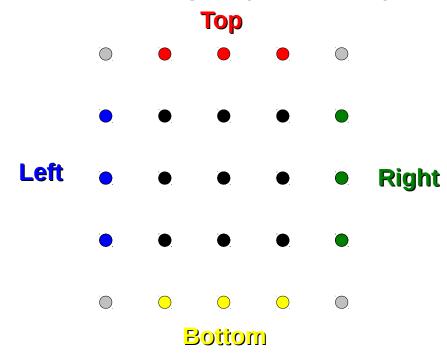
• But we will use numerical solutions, written here in index notation which shows the "stencil" - **-**

$$\frac{\partial^2 f}{\partial x^2} \approx \frac{f_{i+1,j} - 2f_{i,j} + f_{i-1,j}}{(\Delta x)^2}$$

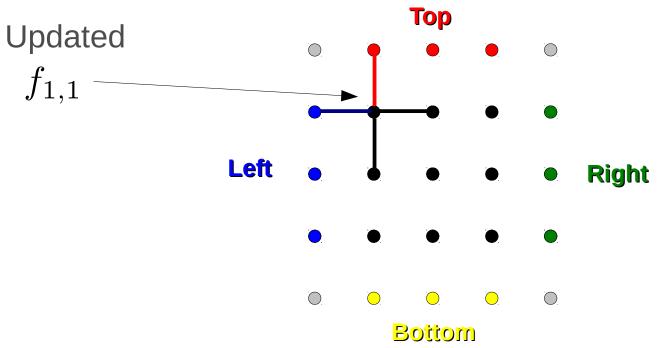
$$\frac{\partial^2 f}{\partial y^2} \approx \frac{f_{i,j+1} - 2f_{i,j} + f_{i,j-1}}{(\Delta y)^2}$$

$$i = 1, j$$

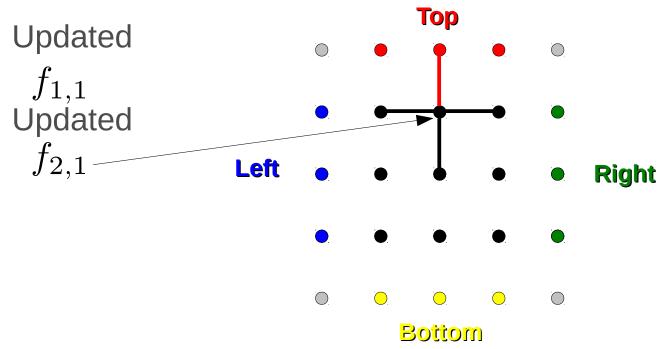
- Notice that if we solve this equation, we use points either side
- Then we move to the next point
- We start from the edge of our domain (boundary)
- These boundary values must be specified and determine the solution we get from solving Laplace's equation



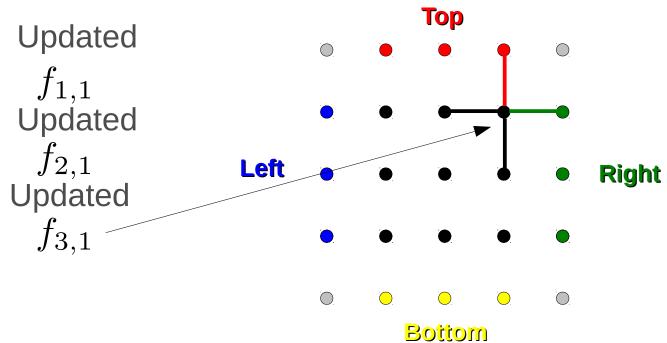
- Notice that if we solve this equation, we use points either side
- Then we move to the next point
- We start from the edge of our domain (boundary)
- These boundary values must be specified and determine the solution we get from solving Laplace's equation



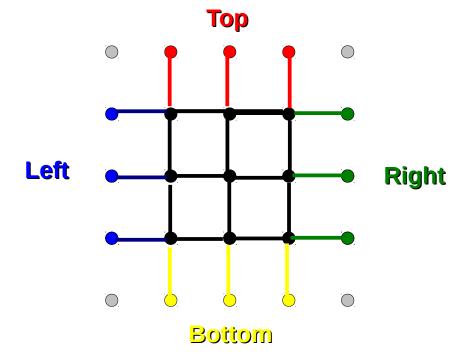
- Notice that if we solve this equation, we use points either side
- Then we move to the next point
- We start from the edge of our domain (boundary)
- These boundary values must be specified and determine the solution we get from solving Laplace's equation



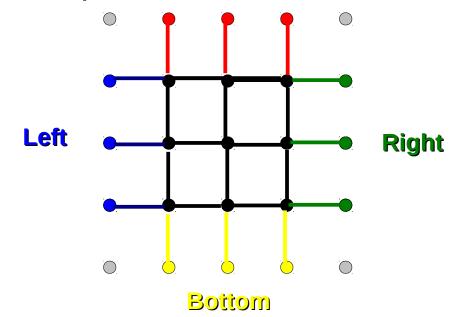
- Notice that if we solve this equation, we use points either side
- Then we move to the next point
- We start from the edge of our domain (boundary)
- These boundary values must be specified and determine the solution we get from solving Laplace's equation

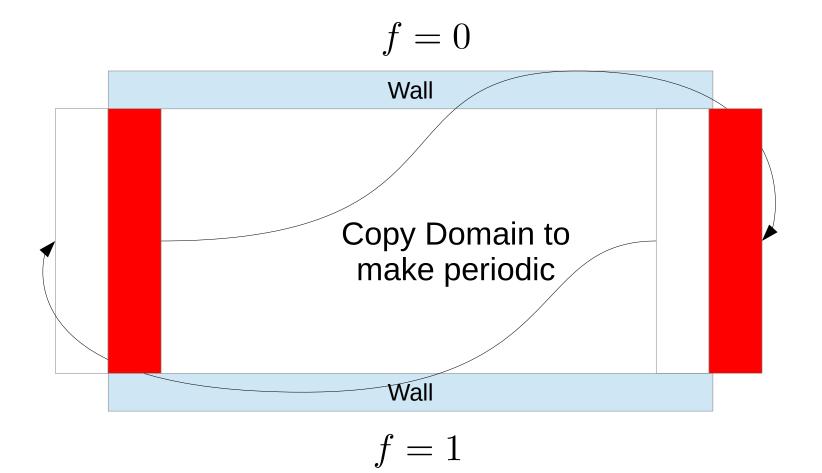


- Proceed until all 9 internal values (in black) are updated Updated $f_{1,1}$ $f_{2,1}$ $f_{3,1}$ $f_{1,2}$ $f_{2,2}$ $f_{3,2}$ $f_{1,3}$ $f_{2,3}$ $f_{3,3}$
- We then repeat the process again starting from these updated values



- Iteration should proceeds until a solution is reached, convergence check: $\left| \sum_{i=1}^{9} \sum_{j=1}^{9} f_{i,j} - \sum_{i=1}^{9} \sum_{j=1}^{9} f_{i,j}^{\text{Previous Iteration}} \right| < \epsilon$
- Iteration must be turned on in Excel (options) or explicitly iterated using a loop in MATLAB





Partial Differential Equations in 2D

- Notice that if we solve this equation, we use points either side
- Then we move to the next point

C5		~ # Σ	= ((B5+D	5)/\$E\$14 +	(C4+C6)/\$	E\$15)*0.5	*\$K\$14
	Α	В	С	D	E	F	G
1		1	1	1	1	1	1
2	0.894	0.89359	0.89352	0.894	0.894	0.893	0.893
з	0.792	0.791529	0.79145	0.791	0.791	0.791	0.791
4	0.694	0.693553	0.69 <mark>347</mark>	0.693	0.693	0.693	0.693
5	0.598	0.598 177	0.59 306	0.5 98	0.598	0.598	0.598
6	0.504	0.503451	0.50828	0.503	0.503	0.503	0.504

Hands-on Session

- 1D Navier Stokes Equation
- Laplace's Equation in 2D
 - MATLAB Iterates to convergence
 - Excel (Note iterations are turned on)

Slides and hands-on code at

edwardsmith.co.uk/content/RS-DFID.zip 42

Functions of Time and Space

• Consider unsteady diffusion

$$\frac{\partial u}{\partial t} = \nu \left[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right] \qquad \qquad u = u(x, y, t)$$

• We have both a first order time derivative (unsteady term)

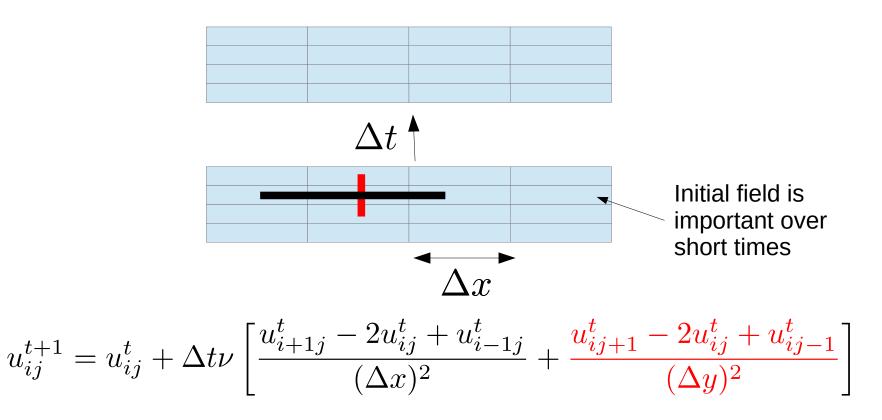
$$\frac{du}{dt} \approx \frac{u(x, t + \Delta t) - u(x, t)}{\Delta t} = \frac{u_i^{t+1} - u_i^t}{\Delta t}$$

• and the second order space derivative (diffusion term)

$$\frac{d^2 u}{dx^2} \approx \frac{u_{i+1,j}^t - 2u_{ij}^t + u_{i-1,j}^t}{(\Delta x)^2}, \ \frac{\partial^2 u}{\partial y^2} \approx \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{(\Delta y)^2}$$

Functions of Time and Space

• Take each field at time t and calculate the field at the next time



Hands-on Session

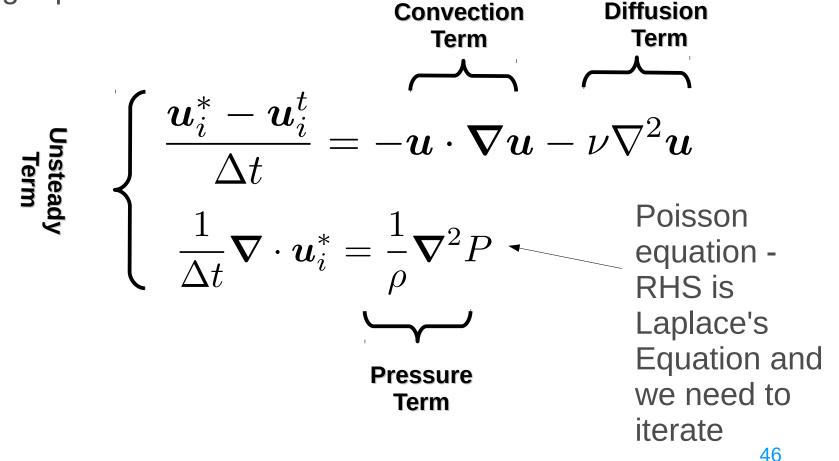
- 1D Navier Stokes Equation
- Laplace's Equation in 2D
 - MATLAB Iterates to convergence
 - Excel (Note iterations are turned on)
- Unsteady Diffusion Equation in 2D
 - MATLAB copies made each loop
 - Excel A copy for each timestep

Slides and hands-on code at

edwardsmith.co.uk/content/RS-DFID.zip 45

Navier Stokes in 2D

• Split time integration into two parts and use mass equation to get pressure

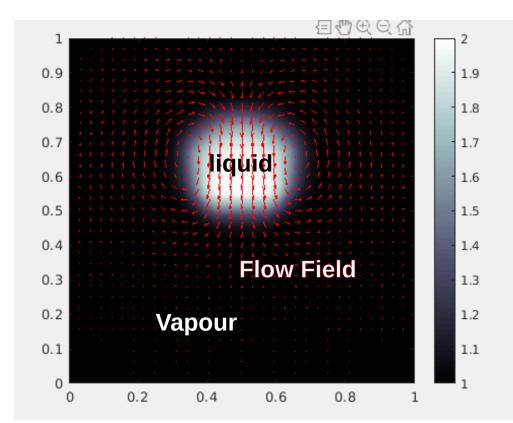


Navier Stokes - Limitations and Extensions

- Only single-phase flows, additional models needed for interface, **nucleation**, contact lines and phase change
- No model for energy, a separate equation if required
- High speed flows (high Mach number) require compressibility to be modelled
- Turbulence requires very large scale simulations or additional models (RANS, LES)
- Flow through porous or granular material more complex
- Non-Newtonian fluid require complex visco-elastic behaviour through additional models

Adding in Multi-Phase Flow

- In order to model boiling, we need to be able to track the location of liquid and vapour regions
- The velocity flow field from the NS equations will then drive the liquid/vapour evolution



 Molecular Dynamics will take care of the nucleation (as we will see in the next section)

Adding in Multi-Phase Flow

- Not a trivial extension, various methods exists, e.g.
 - Volume of Fluid
 - Interface tracking (see later Tryggvason* examples)
 - Levelset
- Here we use the simple approach of Tryggvason*, solve for density propagation to track both liquid/vapour densities

$$\frac{\partial \rho}{\partial t} = -\frac{\partial \rho u}{\partial x}$$

• With artifical diffusion added for numerical stability reasons

$$\frac{\partial \rho}{\partial t} = -\frac{\partial \rho u}{\partial x} + \mu_0 \frac{\partial^2 \rho u}{\partial x^2}$$

Molecular Dynamics will take care of the nucleation (as we will see in the next section)

Adding in Multi-Phase Flow

• Here we use the simple approach of Tryggvason*, solve for density propagation to track both liquid/vapour densities

$$\frac{\partial \rho}{\partial t} = -\frac{\partial \rho u}{\partial x} + \mu_0 \frac{\partial^2 \rho u}{\partial x^2}$$

We evolve the density field in time and use with u* to solve the incompressible pressure field

$$\frac{1}{\Delta t}\boldsymbol{\nabla}\cdot\boldsymbol{u}_i^* = \frac{1}{\rho_i}\boldsymbol{\nabla}^2 P$$

• The boundary conditions for density are set to large values for simplicity, as density appears in denominator of the pressure equation the boundary terms are almost zero 50

Other Numerical Methods

The Navier-Stokes Equation

$$\frac{\partial \underline{u}}{\partial t} + \underline{u} \cdot \underline{\nabla} \, \underline{u} = -\frac{1}{\rho} \underline{\nabla} P + \nu \nabla^2 \underline{u}$$

• Finite Difference Method

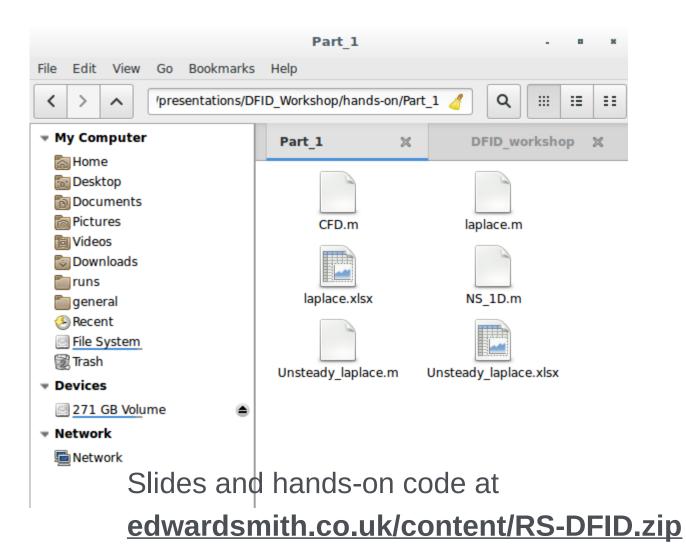
$$\frac{\partial u_i}{\partial x} \approx \frac{u_{i+1} - u_{i-1}}{2\Delta x} \qquad \qquad i - 1 \qquad i \qquad i + 1$$

• Finite Volume Method (used in Tryggvason code)

$$\frac{\partial}{\partial t} \int_{V} \rho \boldsymbol{u} dV = -\oint_{S} \rho \boldsymbol{u} \boldsymbol{u} \cdot d\mathbf{S} - \oint_{S} \boldsymbol{\Pi} \cdot d\boldsymbol{S}$$

• Other methods: finite element, spectral methods, smooth particle hydrodynamics, lattice Boltzmann, ...

Hands-on Session



52

* www.nd.edu/~gtryggva/MultiphaseDNS/

Hands-on Session

Slides and hands-on code at

edwardsmith.co.uk/content/RS-DFID.zip

- 1D Navier Stokes Equation
- Laplace's Equation in 2D
 - MATLAB Iterates to convergence
 - Excel (Note iterations are turned on)
- Unsteady Diffusion Equation in 2D
 - MATLAB copies made each loop
 - Excel A copy for each timestep
- A minimal CFD solver including multi-phase flow
 - Based on minimal code of Tryggvason*
 - See DNS-Solver.pdf file for full details