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● Introduction 

● Continuum Mechanics & Molecular Dynamics 

● Selecting function and Irving and Kirkwood (1950) 

● Control Volume form 

● The Control Volume Function 

● Discrete Reynolds’ transport theorem 

● Governing equations 

● Applying the method to state coupling 

● Flux Coupling and the Pressure Tensor 

● Derivation of the flux form of the control volume equations 

● Pressure tensor 

● Coupling fluxes 

Outline 
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Introduction 
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● Assumed Continuous at every point in space 

● Mass Conservation 

 

 

 

● Momentum Balance (Newton’s Law) 

 

 

 

● Energy Conservation 

Continuum vs. Discrete 
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Direct Numerical Simulation of 

Turbulent Couette Flow 



Continuum vs. Discrete 
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● Discrete Molecules in continuous space 

● Governed by Newton’s Law for an                                 

N-body system 

● Point particles with pairwise interactions 

 

 

 

● Average required to obtain the           

continuous field  

● How do we get an Eulerian description? 
Molecular Dynamics Simulation of 

Couette Flow  



Irving and Kirkwood (1950) 
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● The Dirac delta selects molecules at a point  

● Infinitely high, infinitely thin peak 

● Equivalent to the continuum differential  

formulation at a point 

 

● Cannot be applied directly in a molecular 

simulation as     is never exactly equal to   

● Relaxed weighting function used* 

 

● Co-existence of two descriptions in same 

simulation 

● Overlap used in most coupling schemes 

● Length scales comparable at interface 

 

Selecting Functions 

* E.g. by Hardy(1981), Hoover (2009), 
Murdoch (2010) 



● A finite volume with fluxes and forces acting over its surfaces 

● Mass Conservation 

 

 

 

● Momentum Balance (Newton’s Law 

 

 

 

● Energy Conservation 

The Control Volume (CV) 
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The Control Volume (CV) 

● Writing the molecular system in terms of control volumes 

● Mass 

 

 

 

● Momentum 

 

 

 

● Energy 



The Control Volume Formulation 
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● The Control volume function is the integral of the Dirac delta 

function in 3 dimensions 

 

Control Volume Function 
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For full details, please see 

E.R. Smith, D.M. Heyes, D. Dini, T.A. Zaki, 

Phys. Rev. E 85. 056705 (2012) 



● Taking the Derivative of the CV function 

 

 

 

 

 

● Surface fluxes over the top and               

bottom surface 

 

 

Derivatives yields the Surface Fluxes 
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● Molecular mass in a control volume 

 

 

 

● Mathematical manipulation yields surface fluxes 

 

 

 

 

 

 

Applying the Control Volume Function 
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● Mass, momentum and energy equations 

● Mass Conservation 

 

 

● Momentum Balance 

 

 

 

 

● Energy Conservation 

 

 Reynolds’ Transport Theorem 
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● Mass, momentum and energy equations 

● Mass Conservation 

 

 

● Momentum Balance 

 

 

 

 

● Energy Conservation 

 

 Reynolds’ Transport Theorem 

● The difference between two control volume 

functions for i and j 
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Testing Momentum Balance 

Accumulation Advection Forcing 

● Momentum Balance 
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Advection 

Forcing 

Testing Momentum Balance 

● Momentum Balance 
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Advection Forcing 

Testing Momentum Balance 

● Momentum Balance 
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Testing Momentum Balance 

Accumulation Advection Forcing 

● Momentum Balance 
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Using the CV for coupling 

 Layout of a typical coupled 

simulation 

 Separate MD and CFD regions with Overlap 

region between 

 MD averages give CFD boundary conditions 

 CFD values used to apply a constraint to MD 

 Control Volume can be used to 

 Average values from MD 

 Apply a constraint to any arbitrary CV 

 Constraint is non-unique 

 Hamilton’s principle is one of the most 

fundamental formulations of mechanics 

 Used to apply physically meaningful 

constraints 



● Principle of Least Action (subject to constraint) 

 

 

 

● Semi-Holonomic Constraint 

 

 

● Constraint Equation of O’Connell and Thompson (1995) 
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Constraint Algorithms 
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● Principle of Least Action (subject to constraint) 

 

 

 

● Non-Holonomic Constraint 

 

 

● Constraint Equation 

Constraint Algorithms 



● Combining the CV equations of O’Connell and Thompson 

 

 

 

 

 

 

● Surface forces only are included in the constraint 

● The CV is effectively isolated (no forces) from the rest of the system 

● Extra terms due to molecular flux 

● Molecules crossing the surface result in extra forces 
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Constraint Algorithms 



● Negligible surface flux and average mass/velocity inside volume 

yields Nie, Chen, E and Robbins (2004) coupling 

● Combining the CV equations of O’Connell and Thompson 
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Constraint Algorithms 
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● Continuum-MD coupling using state variables shows good 

agreement in the velocity profiles 

 

State Coupling 
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● Continuum-MD coupling using state variables shows good 

agreement in the velocity profiles 

 

State Coupling 
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● Continuum-MD coupling using state variables shows good 

agreement in the velocity profiles 

● However, a mismatch in the stress can occur at the interface 

● Unless both regions have a constant viscosity, fluxes are not coupled despite 

agreement of velocity profile 

 

 

 

 

 

 

 

● Flux coupling is required  

 

State Coupling 
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● Continuum-MD coupling using flux variables shows good 

agreement in the stress profiles* 

● A mismatch in the velocity occurs at the interface 

● Analogous to the interface between two immiscible fluids 

 

 

 

 

 

 

 

 

● Flux Coupling requires significant statistical averaging 

● Coupling developed for massively parallel applications to exploit high 

performance computers 

● *E. G. Flekkøy, G. Wagner, and J. Feder, Europhys. Lett. 52, 271 (2000). 

 

 

 

 

 

 

 

 

Flux Coupling 



Flux Coupling and                                   

the Pressure Tensor 
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Flux Coupling 

● Surface Stresses ● Divergence of stress 

● Surface Forces 

 

● Flux Coupling requires the equations of motion in terms of 

stresses and fluxes  

 



● The Control volume function is the integral of the Dirac delta 

function in 3 dimensions 

 

 

 

 

 

 

● Replace molecular position with             

equation for a line 

 

 

 

 

 

 

 

 

 

 

Control Volume Function 
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For full details, please see 

E.R. Smith, D.M. Heyes, D. Dini, T.A. Zaki, Phys. Rev. E 85. 056705 (2012) 



● The Control volume function is the integral of the Dirac delta 

function in 3 dimensions 

 

 

 

 

 

 

● Length of interaction inside the CV 

 

 

 

 

Control Volume Function 
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For full details, please see 

E.R. Smith, D.M. Heyes, D. Dini, T.A. Zaki, Phys. Rev. E 85. 056705 (2012) 



● Taking the Derivative of the CV function 

 

 

 

 

 

 

● Surface fluxes over the top and               

bottom surface 

 

 

Derivatives Yield the Surface Forces 
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Surface Pressures 
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● The derivative of       gives forces over the surface - a localisation 

of the method of planes, (Todd et al 1995, Han Lee 2004) 

● Volume Average Form of Lutsko (1988) & Cormier et al (2001) 

● Kinetic ● Configurational 



Surface Pressures 
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● The derivative of       gives forces over the surface - a localisation 

of the method of planes, (Todd et al 1995, Han Lee 2004) 

● Volume Average Form of Lutsko (1988) & Cormier et al (2001) 

 Stress tensor is non-unique but link shown between  

 Volume Average (Lutsko, 1988) and Method of Planes (Todd et al 1995) 

 Exact relationship between surface flux/stress form and 

momentum change inside the control volume 

 Conservation can be used to obtain unknown values 

 Most appropriate form of the non-unique stress tensor for coupling 

 



Coupling the Localised Stresses 
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Coupling the Surface Stresses 
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● Recall the coupled CV equations 

 

 

 

 

 

 

● Includes both force and fluctuation terms* 

● Energy or Entropy CV equation could also be analysed/applied 

in a similar manner 

 

● *  *Flekkoy, Delgado-Buscalioni and Coveney (2005) 
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State or Flux Constraint? 



Control Volume Coupling 

x 

y 

z 

● Molecular 

Equations 

● Continuum 

Equations 39 



● Introduced a novel mathematical function to define a 

control volume in a discrete system 

● Derived in a manner consistent with a continuum control volume 

● Mathematically well defined and applicable to any discrete system 

● Derivation of discrete CV conservation equation 

● Allows control volume analysis to be extended to nano-scale systems 

● The resulting equations are exactly conservative in a discrete system 

● Application to Coupling 

● Allows both systems to be written in a consistent framework 

● Averages from molecular region can be written in terms of continuum 

variables, e.g. surface fluxes 

● Facilitates derivation of constraint algorithms using minimisation 

principles 

 

Summary 
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Thank you for listening 

Any Questions? 
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● We have the mathematical framework to express both 

systems consistently 

● Matching control volumes in both regions 

● Surface fluxes and stress in the CFD and MD are equivalent 

● Apply the extended CV constraint equations to derived 

exactly conservative coupling 

● Total coupled system is exactly conservative 

● Energy and entropy changes can be evaluated exactly 

● Large scale coupling simulation 

● Flexible computational coupling framework already developed for 

parallel MD and CFD codes 

● Simulate very large and highly non-linear problems using coupled 

molecular and continuum systems 

 

 

 

Future Aims 



● Why the continuum form of Reynolds’ transport theorem has a 

partial derivative but the discrete is a full derivative 

● Eulerian mass conservation 

 

 

 

 

● Lagrangian mass conservation 

Moving reference frame 

43 



Continuum Analytical Couette Flow 

t= 10
44 



Shockwaves 

● Current work on application of control volume theory 

 

 

● Paper by Root et al (2003) suggests micro-scale turbulence 

following the shock wave 
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● Use of the momentum conservation of the control volume to 

determine the drag coefficient 

 

 

 

 

 

● Drag over a Carbon Nano-tube can be determined 

Flow past a cylinder 
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