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● Introduction 

● Reynolds’ transport theorem  

● Discrete models (molecular dynamics) 

● Irving and Kirkwood (1950) 

● Discrete Form of Reynolds’ Transport Theorem 

● Control Volume Function 

● Reynolds’ transport theorem using the control volume function 

● Application to microscopic pressure 

● Results  

● Numerical simulations of Couette flow and shockwaves 

● Applying the method to coupling  

● Application to other discrete systems 

Outline 
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Introduction 
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● Conversion of a Lagrangian system to an Eulerian Control 

Volume 

● Mass Conservation  

 

 

 

 

 

● Momentum Balance 

Reynolds’ Transport Theorem 
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● Discrete Molecules in continuous space 

● Governed by Newton’s Law for an N-body system 

● Point particles with pairwise interactions only 

 

 

 

● Discrete N-body system defined               

in terms of sums 

● Sum over entire system defines Lagrangian 

system 

● How do we get an Eulerian description? 

Discrete models (molecular dynamics) 

i 

6 



Irving and Kirkwood (1950) 
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● The Dirac delta selects molecules at a point  

● Infinitely high, infinitely thin peak 

● Equivalent to the continuum differential  

formulation at a point 

 

 

● Cannot be applied directly in a molecular 

simulation as     is never exactly equal to   

 

 

● Relaxed weighting function used by 

Hardy(1981), Hoover (2009),    

Murdoch (2010) and others 

Selecting Functions 



Discrete  

Reynolds’ Transport Theorem 

9 



● Further details of mathematics and numerical simulations are 

available in the recently published paper in Physical Review E 

More information 
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● The Control Volume function is the integral of the Dirac delta 

function in 3 Dimensions 

 

Control Volume Function 
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● Taking the Derivative of the CV function 

 

 

 

 

 

● Surface fluxes over the top and               

bottom surface 

 

 

Derivatives yields the surface flux 
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● Molecular mass in a control volume can be defined 

 

 

 

● Simple mathematical operations using the control volume 

function 

 

 

 

Applying the Control Volume Function 

13 



● Mass, momentum and energy equations 

● Mass Conservation 

 

 

● Momentum Balance 

 

 

 

 

● Energy Conservation 

 

 Reynolds’ Transport Theorem 

● The difference between two control volume 

functions for i and j 
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Testing Momentum Balance 

Accumulation Advection Forcing 

● Momentum Balance 
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Advection 

Forcing 

Testing Momentum Balance 

● Momentum Balance 
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Advection Forcing 

Testing Momentum Balance 

● Momentum Balance 
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Testing Momentum Balance 

Accumulation Advection Forcing 

● Momentum Balance 
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● Volume Average Form of Lutsko (1988) & Cormier et al (2001) 

● The momentum balance equation can be re-written in 

terms of the divergence of pressure 

● Momentum Balance 

Divergence of Pressure 
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● The derivative of       is the forces acting over the surface 

a localisation of the method of planes (Todd et al 1995) 

Surface Pressures 

● The momentum balance equation can be re-written in 

terms of pressure over the control volume surfaces 

● Momentum Balance 

kb 
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Results and Applications 
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Unsteady Couette Flow 
● Molecular Dynamics ● Continuum Analytical 

● Simplify the momentum balance 

(Navier-Stokes) equation 

 

 

 

● Solve the 1D unsteady diffusion 

equation. 

 

 

● With Boundary Conditions 

 

● Fixed bottom wall, sliding top wall 

with both thermostatted 
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Unsteady Couette Flow 
● Molecular Dynamics 

● Discrete form of the Momentum 

balance equation 

 

 

 

 

● Simplifies for a single control volume 

 

 

● Fixed bottom wall, sliding top wall 

with both thermostatted 

● Continuum Analytical 

● Simplify the control volume 

momentum balance equation 

 

 

 

 

● Simplifies for a single control volume 

 

 

● With Boundary Conditions 
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● Simulation setup 

● Starting Couette flow 

● Wall thermostat:  Nosé-Hoover 

● Averages are computed over 1000 

time steps and 8 realizations 

Unsteady Couette Flow 
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Unsteady Couette Flow 

● Simulation setup 

● Starting Couette flow 

● Wall thermostat:  Nosé-Hoover 

● Averages are computed over 1000 

time steps and 8 realizations 
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Coupling 

x 

y 

z 

● Molecular 

Equations 

● Continuum 

Equations 26 



Shockwaves 

● Current work on application of control volume theory 

 

 

● Paper by Root et al (2003) suggests micro-scale turbulence 

following the shock wave 
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● Particles laden continuum flows 

● Sediment transfer in rivers 

● Tracer particles in flow analysis 

● Vortex particle methods 

● Discrete Lagrangian vortices which interact 

● Other discrete meso-scale methods 

● Brownian dynamics  

● Dissipative particle dynamics 

● Smooth particle hydrodynamics 

● Analysis of results from discrete experiments 

● Volumetric 3-component velocimetry 

Other Possible Applications 
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● Introduced a novel mathematical function to defines a control 

volume in a discrete system 

● Derived in a manner consistent with a continuum form of the control volume 

● Mathematically well defined and applicable to any discrete system 

● Reynolds’ transport theorem is extended beyond the continuum 

● Allows control volume analysis to be extended to nano-scale systems 

● The resulting equations are exactly conservative in a discrete system 

● The resulting formulation has a number of applications 

● Give a consistent and intuitive form of molecular pressure – showing the 

connection between two widely used descriptions in the literature 

● Semi-analytical solution to problems like Couette flow 

● Facilitates a rigorous derivation of coupling strategies 

● Analysis of shockwaves and insight into molecular level turbulence. 

 

 

Summary 
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● Thank you for listening 

●       Any Questions? 
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Continuum Analytical Couette Flow 

t= 10
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● Why the continuum form of Reynolds’ transport theorem has a 

partial derivative but the discrete is a full derivative 

● Eulerian mass conservation 

 

 

 

 

● Lagrangian mass conservation 

Moving reference frame 

32 


