Imperial College London

A Decomposition of Droplet Simulation Using Molecular Dynamics

Edward Smith, Panos Theodorakis, Richard Craster and Omar Matar 11:20-11:40 18/09/19

Molecular Dynamics

Molecular Dynamics

Discrete molecules in continuous space

- Molecular position evolves continuously in time
- Position and velocity from acceleration

$$egin{aligned} \dot{m{r}}_i &
ightarrow \dot{m{r}}_i \ \dot{m{r}}_i &
ightarrow m{r}_i(t) \end{aligned}$$

Acceleration obtained from forces

- Governed by Newton's law for an N-body system
- Point particles with electrostatic interactions

$$m_i \ddot{\boldsymbol{r}}_i = \mathbf{F}_i = \sum_{i \neq j}^N \boldsymbol{f}_{ij} = \sum_{i \neq j}^N \boldsymbol{\nabla} \Phi_{ij} \qquad \Phi_{ij} = 4\epsilon \left[\left(\frac{\sigma}{r_{ij}} \right)^{12} - \left(\frac{\sigma}{r_{ij}} \right)^6 \right]$$

Molecular Dynamics

Overview

Linking Molecular and Continuum

• Assumes continuous fields

$$\frac{\partial}{\partial t} \rho \boldsymbol{u} + \boldsymbol{\nabla} \cdot \rho \boldsymbol{u} \boldsymbol{u} = \boldsymbol{\nabla} \cdot \boldsymbol{\Pi} \text{ and } \mu, \lambda, \dots$$

How do we get continuum values from the molecular system?

• Discrete molecules

 $m_i \ddot{\boldsymbol{r}}_i = \mathbf{F}_i$ for all i in N

Irving and Kirkwood (1950)

Irving and Kirkwood (1950)

• The "weak formulation" expressed the equations in integrated form

$$\int_{V} \rho(\boldsymbol{r}, t) dV = \sum_{i=1}^{N} m_{i} \int_{V} \delta\left(\boldsymbol{r} - \boldsymbol{r}_{i}\right) dV$$

- Integrating the Dirac delta function exactly provides a combination of Heaviside functions
 - » Instantaneous description
 - » Direct link between macro and micro description
 - » Exactly conservative

The Control Volume Functional

- The Control volume functional is the formal integral of the Dirac delta • functional in 3 dimensions (3D top hat or box car function) $x^{+} y^{+} z^{+}$ $\vartheta_i \equiv \int \int \int \delta(x_i - x) \delta(y_i - y) \delta(z_i - z) dx dy dz$ $x^{-} y^{-} z^{-}$ $= \left[H(x^+ - x_i) - H(x^- - x_i) \right]$ $\times \left[H(y^+ - y_i) - H(y^- - y_i) \right]$ $\times \left[H(z^+ - z_i) - H(z^- - z_i) \right]$
 - In words
- $\vartheta \equiv \begin{cases} 1 & \text{if molecule is inside volume} \\ 0 & \text{if molecule is outside volume} \end{cases}$ if molecule is outside volume

Derivative yields surface fluxes (Method of Planes)

• Taking the derivative gives flux over the surface of the cube

$$dS_{ix} \equiv -\frac{\partial \vartheta_i}{\partial x_i} = \left[\delta(x^+ - x_i) - \delta(x^- - x_i)\right] \\ \times \left[H(y^+ - y_i) - H(y^- - y_i)\right] \\ \times \left[H(z^+ - z_i) - H(z^- - z_i)\right]$$

• Vector form defines six surfaces

$$d\mathbf{S}_i = \mathbf{i} dS_{xi} + \mathbf{j} dS_{yi} + \mathbf{k} dS_{zi}$$

• Or in words

 $d\mathbf{S}_i \equiv \begin{cases} \infty \\ 0 \end{cases}$

if molecule on surface otherwise

Pressure (Stress) in an MD Simulation

- Pressure definition in a dense molecular system
 - Kinetic part due to fluctuations
 - Configurational part due to liquid structure

Newton's Law of Viscosity

- Shear flow Π_{xy} driven by sliding walls

$$\frac{\partial u}{\partial y} \approx \frac{U_T - U_B}{H}$$

 Viscosity from stress divided by strain

$$\mu = -\frac{\Pi_{xy}}{\partial u/\partial y}$$

 U_B

Heat Flux in an MD Simulation

• Heat flux is left over after counting all other terms

Fourier's law of Heat Conduction

- Heat flux J_q driven by a temperature difference

$$\frac{\partial T}{\partial y} \approx \frac{T_c - T_h}{H}$$

 Coefficient from heat flux divided by temperature gradient

 \mathcal{Y}

$$\lambda = -\frac{J_q}{\partial T/\partial y}$$

• Outputs of the simulation match experiments, shown here for liquid Argon

Overview

Getting Quantities Near an Interface

• Density in a cubic control volume

$$\int_{V} \rho(\boldsymbol{r}, t) dV = \sum_{i=1}^{N} m_{i} \int_{V} \delta(\boldsymbol{r} - \boldsymbol{r}_{i}) dV$$

$$= \sum_{i=1}^{N} m_i \left[H \left(x^+ - x_i \right) - H \left(x^- - x_i \right) \right] \\\times \left[\underline{H(y^+ - y_i)} - H(y^- - y_i) \right] \\\times \left[H(z^+ - z_i) - H(z^- - z_i) \right]$$

• Assume a periodic domain in y and z

Getting Quantities Near an Interface

• Density in a cubic control volume

$$\int_{V} \rho(\boldsymbol{r}, t) dV = \sum_{i=1}^{N} m_{i} \int_{V} \delta(\boldsymbol{r} - \boldsymbol{r}_{i}) dV$$

$$=\sum_{i=1}^{N} m_{i} \left[H \left(x^{+} - x_{i} \right) - H \left(x^{-} - x_{i} \right) \right]$$

 ϑ_i

 $\overline{x_i}$

• Top hat function selects molecules inside a volume. Domain is therefore split into uniform bins in x

Results for Density

0

0

Cluster analysis and surface fitting

Cluster analysis

Intrinsic surface

Choose a function which can fit down to intermolecular spacing

Chacon & Tarazona (2003) PRL 91, 166103

Braga C. et al 2018 J. Chem. Phys 149, 044705

An Intrinsic Control Volume Functional

• Integral between moving intrinsic surfaces

$$\vartheta_{i} \equiv \int_{z^{-}}^{z^{+}} \int_{y^{-}}^{y^{+}} \int_{x^{-} + \xi(y, z)}^{x^{+} + \xi(y, z)} \delta(x - x_{i}) \,\delta(y - y_{i}) \,\delta(z - z_{i}) \,dxdydz$$

$$= \left[H\left(x^{+} + \xi(y_{i}, z_{i}) - x_{i}\right) - H\left(x^{-} + \xi(y_{i}, z_{i}) - x_{i}\right) \right]$$

$$\times \left[H(y^{+} - y_{i}) - H(y^{-} - y_{i}) \right]$$

$$\times \left[H(z^{+} - z_{i}) - H(z^{-} - z_{i}) \right]$$

- In words
- $\vartheta \equiv \begin{cases} 1 & \text{if molecule is inside volume} \\ 0 & \text{if molecule is outside volume} \end{cases}$

An Intrinsic Control Volume Functional

 Assume a periodic domain in y and z with a surface which is equal at the top and bottom (correct as sines and cosines)

$$\vartheta_{i} = \left[H\left(x^{+} + \xi(y_{i}, z_{i}) - x_{i}\right) - H\left(x^{-} + \xi(y_{i}, z_{i}) - x_{i}\right) \right] \\ \times \left[H(y^{+} - y_{i}) - H(y^{-} - y_{i}) \right] \\ \times \left[H(z^{+} - z_{i}) - H(z^{-} - z_{i}) \right]$$

- In words
- $\vartheta \equiv \begin{cases} 1 & \text{if molecule is inside volume} \\ 0 & \text{if molecule is outside volume} \end{cases}$

An Intrinsic Control Volume Functional

 Assume a periodic domain in y and z with a surface which is equal at the top and bottom (correct as sines and cosines)

$$\vartheta_i = \left[H\left(x^+ + \xi(y_i, z_i) - x_i \right) - H\left(x^- + \xi(y_i, z_i) - x_i \right) \right]$$

Top hat functions (varying with y) select molecules inside a volume.

• In words

 $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$

 $\vartheta \equiv$

if molecule is inside volume if molecule is outside volume

Braga C. et al 2018 J. Chem. Phys 149, 044705

Results for Density

Applied to Stress

• Stress in a control volume based on the intrinsic surface

$$\int_{V} \tilde{\boldsymbol{\Pi}}^{c} dV = \sum_{i,j}^{N} \boldsymbol{f}_{ij} \boldsymbol{r}_{ij} \int_{0}^{1} \vartheta_{s} ds$$
$$\vartheta_{s} = \begin{bmatrix} H(x^{+} + \boldsymbol{\xi}(y_{s}, z_{s}) - x_{s}) \\ -H(x^{-} + \boldsymbol{\xi}(y_{s}, z_{s}) - x_{s}) \end{bmatrix}$$

• Line of interaction split over every volume it passes through (shown here by colour)

Results for Stress

$$\gamma = \int_{-\infty}^{x} \left[\Pi_N - \Pi_T \right] dx$$

Results for Surface Tension

Results for Surface Tension

• Surface tension matched to results for liquid Argon using both intrinsic surface and flat surface

Overview

Control volume for intrinsic surface

$$\vartheta = \int_{V(t)} \underbrace{\delta\left(\boldsymbol{r} - \boldsymbol{r}_{i}\right) dV}_{\boldsymbol{\xi}}$$
gets $\tilde{\boldsymbol{\Pi}}, \tilde{\boldsymbol{J}}_{q}$ and γ

Volume moving with fitted spectral surface to molecular spacing

Coupled Droplet Spreading and MD

Coupled Droplet Spreading and MD

Sheared Liquid Bridge

- Two fluid phases and sliding molecular walls
- Simple test case to explore wall velocity vs contact line angle
- Non-Equilibrium Steady State

 $\mathcal{L}agrangian$

Smith et al 2016 Soft Matter, 12, 48

Time Evolution of Contact Angle

• Linear, Advancing and Receding angles

 Model the movement of the contact line as a torsional string mass system + a random noise term

• Torque $T = F \times L$ approximately equal to wall sliding

Building this into the Continuum Model

- In the limit overdamped limit we get the Langevin Equation $\dot{\theta} + \frac{k}{\Gamma} \left[\theta - \langle \theta \rangle\right] - \frac{1}{\Gamma} \xi(t) = 0 \text{ where } \langle \xi(t)\xi(t') \rangle = C\delta(t - t'),$
- Coefficients parameterised using
 - Standard deviation function of temperature velocity independent
 - Autocorrelation roughly velocity and temperature independent.

Smith et al 2016 Soft Matter, 12, 48

Building this into the Continuum Model

 Speed of contact line obtained from a Langevin model tuned by the molecular PDF

$$\theta^{t+1} = \theta^{t} - \frac{k\Delta t}{\Gamma} \left[\theta^{t} - \langle\theta\rangle\right] + \xi \frac{\sqrt{C\Delta t}}{\Gamma}$$
Evolution of the mean governed by macroscopic laws (Tanners, MKT, Cox)

Random term tuned to match MD contact line fluctuation and autocorrelation Smith et al 2016 Soft Matter, 12, 48

Coupled with CFD model

Overview

Control volume for intrinsic surface

$$\vartheta = \int_{V(t)} \delta(\mathbf{r} - \mathbf{r}_i) \, dV$$

$$gets \quad \tilde{\Pi}, \tilde{J}_q \text{ and } \gamma$$
Volume moving with fitted spectral surface to molecular spacing
Control volume operator
$$\vartheta = \int_V \delta(\mathbf{r} - \mathbf{r}_i) \, dV$$

$$gets \quad \Pi, J_q, \mu \text{ and } \lambda$$

$$under the spectral surface to molecular spacing$$
Langevin equation for contact angle
$$\theta' \neq \theta' \quad \xi \varphi' \quad \xi \psi \in \Psi$$

Overview

Longer Term Plans - Direct Coupling

45

Coupled CFD-MD Simulation

O'Connell Thompson (1995), Hadjiconstantinou (1998), Flekkoy (2000), Nie et al (2004).

Coupling Results – Couette Flow

Coupling Results – Couette Flow

Coupling Results – Couette Flow

Coupled Simulation Software

Summary

Control volume for intrinsic surface

$$\vartheta = \int_{V(t)} \delta(\mathbf{r} - \mathbf{r}_i) \, dV$$

$$gets \quad \tilde{\Pi}, \tilde{J}_q \text{ and } \gamma$$
Volume moving with fitted spectral surface to molecular spacing
Control volume operator
$$\vartheta = \int_V \delta(\mathbf{r} - \mathbf{r}_i) \, dV$$

$$gets \quad \Pi, J_q, \mu \text{ and } \lambda$$
Langevin equation for contact angle
$$\theta' \neq \int_V \delta(\mathbf{r} - \mathbf{r}_i) \, dV$$

$$gets \quad \Pi, J_q, \mu \text{ and } \lambda$$