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Summary

• Introduction to Molecular Dynamics (MD)

• Insights from Molecular Dynamics (MD)

• Coupled Simulation
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INTRODUCTION TO MOLECULAR 

DYNAMICS

Section 1
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Computational Fluid Dynamics

• Fields assumed to be continuous at every point in space

• Mass Conservation

• Momentum Balance (Newton’s Law)

• Energy Conservation

Direct Numerical Simulation of 

Turbulent Couette Flow
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• The Incompressible Navier-Stokes Equation

• Non dimensional form

• Reynolds number 

• Ratio of convection to diffusion

• Scaling argument applied to any scale -- is there a minimum?

Computational Fluid Dynamics
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• The Incompressible Navier-Stokes Equation

• Non dimensional form

• Reynolds number 

• Scaling argument applied to any scale 

• Is there a minimum?

• Travis et al (1997) continuum valid in a nanometer channel

• Most fluid dynamics appears to be identical for multi-phase flows

• Molecular dynamics is a more fundamental model

Computational Fluid Dynamics
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• Solving just Newton’s law

• Energy is automatically conserved → total = kinetic + potential

• Pressure, viscosity, heat flux and surface tension do not need to 

be specified and, are in fact, all outputs of the simulation

• Phase change (evaporation, condensation) occur with no 

additional models needed

• Solid-liquid surface constructed with molecular roughness

• Can model complex molecules, water, polymers, biomolecules

Molecular Dynamics
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Discrete molecules in continuous space

• Molecular position evolves continuously in time

• Position and velocity from acceleration

Acceleration obtained from forces

• Governed by Newton’s law for an N-body system

• Point particles with pairwise interactions – electrostatics from 

quantum mechanics

i

Molecular Dynamics
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Stick-slip 

near walls

Liquid 

structure 

causes 

viscosity

Average behaviour 

reproduces 

hydrodynamics 

(coloured by 

velocity)

Reynolds Number

with 

4096 molecules

Molecular Dynamics
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MD Computing

• Force Calculation

• All pairs simulation uses local cell and neighbour lists to reduce 

the N2 calculation to order N

• Move particles (leapfrog in time)
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MD Computing – Parallel optimisations

Localisations lends itself to parallel computing using MPI

• Spatial decomposition employed as in CFD

• Halo cells (ghost molecules) are used to link adjacent 

regions

Halo exchange of variable amounts of data

• MPI_Send

• MPI_Probe and MPI_Recv
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NEMD - Tethering and Thermostatting

• Non Equilibrium Molecular Dynamics (NEMD) is the study 

of cases beyond thermodynamic equilibrium, with:

• Temperature gradients

• Flow of fluid (e.g. Couette or Poiseuille flow)

• We induce temperature gradients and flows

• Thermostats (e.g. Nosé Hoover)

• Remove heat from system

• Tethered molecules

• (An)harmonic spring to tether site

• With sliding

• Slide site and (optionally) molecules
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NEMD - Tethering and Thermostatting

• Non Equilibrium Molecular Dynamics (NEMD) is the study 

of cases beyond thermodynamic equilibrium, with:

• An MD system is completely described by position     and velocity     

of all N molecules in the system

• Theoretical underpinning in the form of the Liouville equation – a 

continuity equation in 6N degrees                        which gives,

• Special interest group (SIG) in NEMD

• Let me know if you want to join

• Potential applications in a wide range of problems in fluid dynamics 

so need help identifying interesting challenges

• The microscopic underpinnings of fluid dynamics
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Molecular Dynamics – Complex Walls and Fluids

Oil, water and textured surface

Stick-slip 

near walls

Liquid 

structure 

causes 

viscosity

Wall 

Texture

Molecules

of arbitrary 

complexity
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Molecular Dynamics – Shocks and Multi-Phase

Shockwave Droplet Formation

Nucleation Contact line 15



Molecular Dynamics - Averaging

Refine

• Density in a cell

• Momentum in a cell

• Temperature in a cell
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Pressure (stress) in an MD Simulation

• Pressure definition in a dense molecular system

• Kinetic part due to fluctuations

• Configurational part due to liquid structure

Kinetic 

theory part
Momentum due 

to average of 

molecules 

crossing a plane

and returning 

Configurational 

part
Inter-molecular 

bonds act like the 

stress in a 

stretched spring
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Viscosity

• Good agreement with experiments
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Fourier’s law of heat conduction

• Good agreement with experiments

Work with Billy Todd and Peter Daivis
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Results for Surface Tension

• Good agreement with experiments

Integrate 

over 

Liquid

Vapour 

interface(s)
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INSIGHTS FROM MD
Section 2

2

1



Insights From MD

• Turbulence

• Non-Newtonian fluids

• Multi-phase flow and nucleation

2
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INSIGHTS FROM MD

> Turbulence

Section 2.1

2
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Molecular Simulation of Turbulence

• Turbulent flow

• Fluid flow which is spatially and temporally varying

• Inertial effects dominate viscous

• No clear order and not simply chaotic motions

• Some standard characteristics

• Statistics are reproducible

• The law of the wall

• Range of scales

• Minimal Channel flow

• Insight into fundamental mechanisms

• For molecular dynamics this is all we 

can do with current computers

E

k
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Molecular Simulation of Turbulence
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Molecular Simulation of Turbulence

Reynolds Number

with 

300 million 

molecules
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Reynolds Number

with 

300 million 

molecules

Minimal channel Couette 

flow

Molecular Simulation of Turbulence
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Minimal channel Couette 

flow

Reynolds Number

with 

300 million 

moleculesIsosurfaces of turbulent kinetic 

energy coloured by velocity

Molecular Simulation of Turbulence
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Isosurfaces of turbulent kinetic 

energy coloured by velocity

Reynolds Number

with 

300 million 

molecules

Molecular Simulation of Turbulence
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Molecular Turbulent Couette Flow
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MD CFD 

(Channelflow)

Centre slice velocity

F. Gibson. 
Channelow: A 

spectral Navier-
Stokes simulator 

in C++. 
Technical report, 

U. New 
Hampshire, 

2012.
Channelflow.org.

Own code 
written in 

Fortran and 
parallelised 
using MPI

MD vs CFD

33



Statistical Results

• Averaged velocity profile

• No longer Laminar profile 

across domain

• Good agreement with 

literature

• Numerical continuum studies 

(points) 

• Experimental results from 

turbulent simulations

(bottom graph)
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Reynolds Decomposition

• Inspired by kinetic theory, Osborne Reynolds split fluid 

motion into average and fluctuating part

• Time average to get the Reynold Averaged Navier-Stokes equations

• Reynolds stress tensor doesn’t disappear

• Approximated by eddy viscosity
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Pressure Tensor in an MD Simulation

• Pressure definition in a dense molecular system

• Kinetic part due to fluctuations

• Configurational part due to liquid structure

Kinetic 

theory part
Momentum due 

to average of 

molecules 

crossing a plane

and returning 

Configurational 

part
Inter-molecular 

bonds act like the 

stress in a 

stretched spring
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Same Concept, Different Scales

Peculiar velocity

Reynolds’     Decomposition

• Kinetic part of the pressure tensor and Reynolds stress same 

mathematical quantity averaged over different length/time scales

𝑢 = 𝑢′ + ത𝑢

ሶ𝑟𝑖 = 𝑣𝑖 + 𝑢

Molecular average time Continuum average time 
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Big whirls have little whirls that feed on their velocity,
and little whirls have lesser whirls and so on to viscosity MD

Is Reynolds Stress just Kinetic Pressure?
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• Run over ~5 cycles or 500 flow through times 

• Temperature and Velocity are interconnected over a regeneration cycle

Temperature

Velocity
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MD Conserves Energy

• Velocity in a cell

• Temperature in a cell



MD Conserves Energy

Turbulent 

Kinetic 

Energy 

(TKE) a 

small part of 

kinetic, 

shown 

scaled up

Interchange of 

kinetic, potential

&TKE energy

following the 

regeneration cycle

40
Flowthrough time (h/U)

A cycle is ~100



INSIGHTS FROM MD

> Non-Newtonian Flows

Section 2.2

4
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Back to the Hierarchy of Scales

42

Can we gain 

insight from 

the liquid 

structure?



Different Tribological Regimes
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From Stress to Viscosity

• Approximate stress in terms of viscosity

• Viscosity is the integral of the shear-stress correlation (Green Kubo) 

of individual stress trajectories



Viscosity

• Viscosity can be negative

• The second law of thermodynamics is 

not absolute, just exponentially more 

likely as system size increases

• Know as fluctuation theorem



INSIGHTS FROM MD

> Multi-phase Flow

Section 2.3

4
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Multiphase Flows

Smeared interface
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Intrinsic surface

• Molecular dynamics naturally forms a liquid vapour interface

Chacon & Tarazona (2003) PRL 91, 166103

• Surface fitted by lest squares

• function of sines and cosines

Work with Carlos Braga and Serafim Kalliadasis
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Results for Density

50

Work with Carlos Braga and Serafim Kalliadasis



Dynamic Contact Line
1) Thompson and Robbins (1989) 



Dynamic Contact Line

• Model the 
moving contact 
line with MD

• We want contact 
line speed as a 
function of 
continuum 
contact angle

1) Thompson and Robbins (1989) 



Dynamic Contact Line

• In Continuum, an empirical contact line model 

is needed. Output of MD

• Two fluid phases and sliding molecular walls

• Wall velocity vs contact line angle



Time Evolution of Contact Angle

• Contact angles fluctuates as a function of time

• Probability density 

function of angle 

shows range of 

micro-scale 

behaviour
• Linear, Advancing and Receding angles



Building this into the Continuum Model

• A Langevin Equation uses random noise to model this

• Coefficients parameterised using 

• Standard deviation – range of fluctuations

• Autocorrelation – how quickly they decay.



Bubbles nucleate   

in valley

Vapour

Wall with fractal  

molecular 

roughness

Liquid

Heated Region

Isosurface

of average 

density

800,000

molecules

Molecular Dynamics simulation of Nucleation
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Work with Omar Matar & Tassos Karayiannis 

EMBOSS EPSRC grant



Isosurface

of average 

density

Bubbles grow, 

coalesce and 

eventually 

form a film

800,000

molecules

Isosurface of Density

Twall=1.3
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Work with Omar Matar & Tassos Karayiannis 

EMBOSS EPSRC grant



COUPLED SIMULATION
Section 2
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Domain Decomposition

MD –CFD linked along an 

interface 2)

Embedded Models (HMM)

MD – embedded in a CFD 
simulation 1)

Table Lookup or 

Coefficients

MD parameter study 

stored in table and CFD 

uses data

Coupling – Using MD with CFD

1) Ren (2007), E et al (2003), Borg et al (2013) 2) O’Connell and Thompson (1995), Flekkøy at al (2000), Nie et al 
(2004), Hadjiconstantinou et al (1999), Delgado-Buscalioni & Coveney, (2003), Mohamed & Mohamad, (2009)



Domain Decomposition

MD –CFD linked along an 

interface 2)

Embedded Models (HMM)

MD – embedded in a CFD 
simulation 1)

Table Lookup or 

Coefficients

MD parameter study 

stored in table and CFD 

uses data

Coupling – Using MD with CFD

1) Ren (2007), E et al (2003), Borg et al (2013) 2) O’Connell and Thompson (1995), Flekkøy at al (2000), Nie et al 
(2004), Hadjiconstantinou et al (1999), Delgado-Buscalioni & Coveney, (2003), Mohamed & Mohamad, (2009)
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Coupled CFD-MD Simulation

• Discrete molecules

CFD→MD 

Boundary 

condition

MD→CFD 

Boundary 

condition

O’Connell Thompson (1995), Flekkoy (2000), Nie et al (2004), Smith et al (2012), Smith et al (2015) 

Buffer

• Finite Volume Solver

Work with David Heyes, Tamer Zaki and Daniele Dini



Coupled Simulation Software

www.cpl-library.orgFlowMol

libcpl.so

CPL_init(COMM, realm)

CPL_setup(cells, domain, topology)

CPL_recv(U, P)            CPL_send(U, P)

CPL_send(F, e)             CPL_recv(F, e)
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Coupling Results – Couette Flow

CFD

Overlap

MD

Buffer

Constraint

CFD Boundary

Work with David Heyes, Tamer Zaki and Daniele Dini



Coupling Results – Couette Flow

Rough wall shifts

zero location

CFD

Overlap

MD

Buffer

Constraint

CFD Boundary

Work with David Heyes, Tamer Zaki and Daniele Dini



Coupling Results – Couette Flow

CFD

Overlap

MD
Posts shift zero

location

Buffer

CFD Boundary

Constraint

Work with David Heyes, Tamer Zaki and Daniele Dini



Coupling Results – Polymer Brushes

Work with David Heyes, Tamer Zaki and Daniele Dini



Coupling Results – Turbulent Couette

Loglaw

Buffer

Viscous

Subviscous? (MD)

67



Coupling Results – Turbulent Couette

MD                                  CFD                   OpenFOAM               

Control Volume Constraint

Loglaw

Buffer

Viscous

Subviscous? (MD)



Coupled Simulation of An Interface

CFD
Vapour

Buffer

Buffer

CFD
Liquid

MD
Liquid-Vapour 

InterfaceCFD Boundary

CFD Boundary



Coupled Simulation of Boiling

• Bubble nucleation 

occurs naturally in 

MD

• Density, velocity and 

temperature passed 

as boundary 

conditions



Summary

• Introduction to Molecular Dynamics (MD)

• Solves Newton’s law for individual molecules

• Only empirical assumption is inter-molecular interaction 

(tuned by quantum mechanics detail)

• Energy conserved and viscosity, surface tension, etc outputs

• Insights from Molecular Dynamics (MD)

• Insights into minimal channel turbulent flow

• Turbulent eddies are viscosity at inter-molecular scale, 

viscosity can be negative

• Multi-phase flow, contact line and nucleation modelled

• Coupled Simulation

• Use MD only where needed as part of a CFD simulation –

including near wall, liquid vapour interfaces

• Allows large simulations to be run cheaply 7
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