

MULTISCALE INVESTIGATION OF **NUCLEATE-BOILING** AND INTERFACES

Edward Smith, Mirco Magnini and Victor Voulgaropoulos **Talk 187 - UKHTC 2019** 11:20-12:40 on 09/09/19

Brunel University London

MINI - Project Scope

- A collaboration funded by the Julia Higgins fund at Imperial
- Combining
 - Computational fluid dynamics (CFD)
 - Molecular dynamics (MD)
 - Experiments
- Follow on in the form of EMBOSS EPSRC grant

Experimental Results

Victor Voulgaropoulos

Conference theatre 16:15 Monday Talk 175

Brunel University London

Continuum CFD

• Mirco Magnini

$$\frac{\partial(\rho \boldsymbol{u})}{\partial t} + \nabla \cdot (\rho \boldsymbol{u} \boldsymbol{u}) = -\nabla p + \nabla \cdot \left[\mu \left(\nabla \boldsymbol{u} + \nabla \boldsymbol{u}^T\right)\right] + \boldsymbol{F}_{\boldsymbol{\sigma}}$$

$$\frac{\partial \alpha}{\partial t} + \nabla \cdot (\alpha \boldsymbol{u}) = \frac{1}{\rho_{\nu}} m_i^{\prime\prime} |\nabla \alpha|$$

Later this session

Talk 168

$$\frac{\partial(\rho c_p T)}{\partial t} + \nabla \cdot \left(\rho c_p \boldsymbol{u} T\right) = \nabla \cdot \left(\lambda \nabla T\right) - m_i^{\prime\prime} \left[h_{l\nu} - \left(c_{p,\nu} - c_{p,l}\right)T\right] |\nabla \alpha|$$

$$\nabla \cdot \boldsymbol{u} = \left(\frac{1}{\rho_{\nu}} - \frac{1}{\rho_{l}}\right) m_{i}^{\prime\prime} |\nabla \alpha|$$

$$m_i^{\prime\prime} = \frac{h_i}{h_{l\nu}} \left(T_i - T_{sat}(p_{\nu}) \right),$$

$$h_i = \frac{2\gamma}{2-\gamma} \left(\frac{\overline{M}}{2\pi\overline{R}}\right)^{1/2} \frac{\rho_v h_{lv}^2}{T_{sat}^{3/2}(p_v)}$$

U (m/s) 0.50 0.4 0.3 0.2 0.1 0.00	T (K) 334 332 330 327 325 323 321
x x	Time: 0.00000 s

Molecular Dynamics

Discrete molecules in continuous space

- Molecular position evolves continuously in time
- Position and velocity from acceleration

$$egin{aligned} \dot{m{r}}_i &
ightarrow \dot{m{r}}_i \ \dot{m{r}}_i &
ightarrow m{r}_i(t) \end{aligned}$$

Acceleration obtained from forces

- Governed by Newton's law for an N-body system
- Point particles with electrostatic interactions

$$m_i \ddot{\boldsymbol{r}}_i = \mathbf{F}_i = \sum_{i \neq j}^N \boldsymbol{f}_{ij} = \sum_{i \neq j}^N \boldsymbol{\nabla} \Phi_{ij} \qquad \Phi_{ij} = 4\epsilon \left[\left(\frac{\sigma}{r_{ij}} \right)^{12} - \left(\frac{\sigma}{r_{ij}} \right)^6 \right]$$

Molecular Dynamics

 $Reynolds\ Number$

 $Re \approx 400$

with 300 million molecules

Reynolds Number

 $Re\approx 400$

with 300 million molecules

Isosurfaces of turbulent kinetic energy coloured by velocity

molecules

Isosurfaces of turbulent kinetic energy coloured by velocity

Molecular Dynamics Complex Walls and Fluids

Contact line

Oil, water and textured surface

Empirical Coefficients

 Outputs of the simulation match experiments, shown here for liquid Argon

• Green-Kubo

Kirkwood Buff

Green-Kubo

Reynolds

 $Re = \frac{\rho u R}{\mu}$

• Eotvos (Bond)

 $Eo = \frac{\Delta \rho g R^2}{\gamma}$

Bubble

Capillary

$$Ca = \frac{\mu u}{\gamma}$$

Marangoni

 $Ma = -\frac{\partial\gamma}{\partial T}\frac{R\Delta T}{\mu\kappa}$

Viscosity

Surface tension

Heat Flux

$$\mu = \frac{V}{k_B T} \langle \Pi_{xy}(t) \Pi_{xy}(0) \rangle \qquad \gamma = \int \left(\Pi_N - \Pi_T \right) dx$$

• Green-Kubo

Kirkwood Buff

Green-Kubo

 $\kappa = \frac{V}{k_B T} \langle q_y(t) q_y(0) \rangle$

Phase Diagram

Molecular Dynamics simulation of Nucleation

Isosurface of Density

Pool Boiling Curve

No nucleation and convection

Nucleate Boiling

Film Boiling

Coupled CFD-MD Simulation

Assumes a continuous field

$$\frac{\partial}{\partial t}\rho \boldsymbol{u} + \boldsymbol{\nabla} \cdot \rho \boldsymbol{u} \boldsymbol{u} = \boldsymbol{\nabla} \cdot \boldsymbol{\Pi}$$

Discrete molecules

 $m_i \ddot{\boldsymbol{r}}_i = \mathbf{F}_i$ for all i in N

19

Coupled CFD-MD Simulation

O'Connell Thompson (1995), Hadjiconstantinou (1998), Flekkoy (2000), Nie et al (2004).

Coupling Results – Couette Flow

Coupling Results – Couette Flow

Coupling Results – Couette Flow

Coupling Results – Polymer Brushes

Coupling Results – Boiling

Coupled Simulation of Boiling

- CFD uses interface tracking to track MD bubble
- A minimal CFD in Python and MATLAB (written by Mirco)
- Density, velocity and temperature values passed to CFD

Compared To Experiments

Experiments from Victor

 $Re = \frac{\rho u R}{\mu} \quad Eo = \frac{\Delta \rho g R^2}{\gamma}$

 $Ca = \frac{\mu u}{\gamma} \quad Ma = -\frac{\partial \gamma}{\partial T} \frac{R\Delta T}{\mu \kappa}$

Compared To Experiments

- Molecular dynamics (MD) provides nucleation, viscosity, heat flux, etc from Newton's law
- Coupled to computational fluid dynamics so
 only minimum MD computation required
- Experiments show some similarity once nucleated, relate by dimensionless numbers

Molecular Dynamics simulation of Nucleation

