

Molecular Dynamics Across the Scales

Edward Smith, David Heyes and Daniele Dini

02/10/19 Multi-scale and non-continuum flows Special Interest Group

Plan

- Large-scale molecular dynamics (MD)
- Understanding the range of scales
- Molecular structure, the link to stress and viscosity
- Non-equilibrium molecular dynamics (NEMD)

Section 0

Molecular Dynamics

Discrete molecules in continuous space

- Molecular position evolves continuously in time
- Position and velocity from acceleration

$$egin{aligned} \dot{m{r}}_i &
ightarrow \dot{m{r}}_i \ \dot{m{r}}_i &
ightarrow m{r}_i(t) \end{aligned}$$

Acceleration obtained from forces

- Governed by Newton's law for an N-body system
- · Point particles with pairwise interactions only

$$m_i \ddot{\boldsymbol{r}}_i = \mathbf{F}_i = \sum_{i \neq j}^N \boldsymbol{f}_{ij} = \sum_{i \neq j}^N \boldsymbol{\nabla} \Phi_{ij} \qquad \boldsymbol{\Phi}(r_{ij}) = 4\epsilon \left[\left(\frac{\ell}{r_{ij}} \right)^{12} - \left(\frac{\ell}{r_{ij}} \right)^6 \right]$$

Molecular Dynamics

 $Reynolds\ Number$

 $Re \approx 400$

with 300 million molecules

Reynolds Number

 $Re \approx 400$

with 300 million molecules

Isosurfaces of turbulent kinetic energy coloured by velocity

molecules

Molecular Turbulent Couette Flow

Brunel University London

Statistical Results

Averaged velocity profile

 No longer Laminar profile across domain

- Good agreement with literature
 - Numerical continuum studies (points)
 - Experimental results from turbulent simulations (bottom graph)

By KNUT H. BECH¹, NILS TILLMARK², P. HENRIK ALFREDS SON² and HELGE I. ANDERSSON¹

Turbulent Stresses & Molecular Stresses

Brunel

University

Ja

Pressure Tensor in an MD Simulation

- Pressure definition in a dense molecular system
 - Kinetic part due to fluctuations
 - Configurational part due to liquid structure

Turbulent Stresses & Molecular Stresses

Section 1 UNDERSTANDING THE RANGE OF SCALES

Same Concept, Different Scales

 Kinetic part of the pressure tensor and Reynolds stress same mathematical quantity averaged over different length/time scales

 $\langle \dots \rangle$

$$\sum_{i=1}^{N} \overline{\langle \dot{r}_{i} \dot{r}_{i}
angle} = \sum_{i=1}^{N} \overline{\langle v_{i} v_{i}
angle} + \overline{u' u'} + \overline{u u}$$

Molecular average time

Continuum average time

Continuum Equations

• Right hand side is the divergence of a pressure tensor

$$\frac{\partial}{\partial t}\rho \boldsymbol{u} + \boldsymbol{\nabla} \cdot \rho \boldsymbol{u} \boldsymbol{u} = -\boldsymbol{\nabla} \cdot \boldsymbol{\Pi}$$

• Reynold's Decomposition gives us,

$$\frac{\partial}{\partial t}\rho\overline{\boldsymbol{u}} + \boldsymbol{\nabla}\cdot\rho\overline{\boldsymbol{u}\boldsymbol{v}} = -\boldsymbol{\nabla}\cdot\rho\overline{\boldsymbol{u}'\boldsymbol{v}'} - \boldsymbol{\nabla}\cdot\boldsymbol{\Pi}$$

• Where the pressure tensor can be expanded to

$$\frac{\partial}{\partial t}\rho\overline{\boldsymbol{u}} + \boldsymbol{\nabla}\cdot\rho\overline{\boldsymbol{u}}\overline{\boldsymbol{v}} = -\boldsymbol{\nabla}\cdot\rho\overline{\boldsymbol{u}}\overline{\boldsymbol{v}} - \underbrace{\sum_{i=1}^{N}\left\langle m_{i}v_{xi}v_{yi}dS_{yi}\right\rangle}_{\text{Kinetic}} - \underbrace{\frac{1}{2}\sum_{i=1}^{N}\sum_{j\neq i}^{N}\left\langle f_{xij}dS_{yij}\right\rangle}_{\text{Configurational}}$$

A Hierarchy of Scales

- At least three scales in the problem
 - Turbulent fluctuations
 - Kinetic fluctuations
 - Configurational part due to liquid structure

Brunel University London

Across the Scales

2

Brunel University London

Across the Scales

Molecular Structure

Refining our Grid

Spectra

Dotted lines - laminar initial condition at same Re 24

Section 2 **MOLECULAR STRUCTURE AND THE LINK TO VISCOSITY**

A Hierarchy of Scales

The Stress Tensor

- a) Virial, b) Volume Averaged (VA) and c) Surface (MOP) Stresses
 - Even with one particle in a cell, very complex physics
 - Stress is the right hand side so fully captures the complex fluid behaviour

Taking the Zero Volume Limit

Configuration Stress PDF

Configuration Stress PDF

From Stress to Viscosity

• Approximate stress in terms of viscosity

$$\frac{\partial}{\partial t}\rho \boldsymbol{u} + \boldsymbol{\nabla} \cdot \rho \boldsymbol{u} \boldsymbol{u} = -\boldsymbol{\nabla} \cdot \boldsymbol{\Pi} \approx -\boldsymbol{\nabla} P + \mu \nabla^2 \boldsymbol{u}$$

 Viscosity from the integral of the ensemble averaged shear-stress correlation (Green Kubo)

$$\mu = \frac{V}{k_B T} \int_0^t \left\langle \Pi_{xy}(\tau) \Pi_{xy}(0) \right\rangle d\tau$$

• We can take **individual stress trajectories** to get the "viscuit" which sum to give the overall viscosity

$$\mu_u = \frac{V}{k_B T} \int_0^t \Pi_{xy}(\tau) \Pi_{xy}(0) \ d\tau$$

Viscosity

Viscosity

• Correlation used to get viscosity could be used in a stochastic model

• However, stochastic model does not capture current state of stress – structure determines the evolution, evolution determines the viscosity

Section 3 NON EQUILIBRIUM MOLECULAR DYNAMICS (NEMD)

- Non Equilibrium Molecular Dynamics (NEMD)
 - Structure of the molecules is the key
 - An MD system is completely described by position $m{r}_i$ and velocity $m{v}_i$ of all N molecules in the system
 - Theoretical underpinning in the form of the Liouville equation a continuity equation in 6N degrees $f = f(r_i, v_i)$ which gives,

$$\frac{df}{dt} = \sum_{i=1}^{N} \left[\frac{\partial \boldsymbol{r}_i}{\partial t} \frac{\partial f}{\partial \boldsymbol{r}_i} + \frac{\partial \boldsymbol{v}_i}{\partial t} \frac{\partial f}{\partial \boldsymbol{v}_i} \right]$$

- New Special interest group (SIG) on NEMD
 - First meeting 17th January 2020 at Brunel, London, please let me know if you're interested in joining
 - Focus on statistical mechanics, molecular microscopic underpinnings of fluid dynamics and include a wider community in the UKFN
 - Potential applications in a wide range of problems in fluid dynamics 36

Summary

- Molecular Dynamics (MD) turbulent minimal channel
 - Large scale flow matches continuum simulation of turbulent flow
 - MD can model the full range of scales, below the Kolmogorov length scale, down to the molecular lattice
- But impossible to get a picture of these small scales due to molecular fluctuations or "noise"
 - Instead of noisy velocity, we measure stresses and viscosity
 - Taking PDF of stress and "viscuit" provides further insights
- Non-equilibrium molecular dynamics (NEMD)
 - The study of fluids phenomena from molecular structure
 - New SIG to explore fundamental MD fluid simulation

Section 4 BONUS SLIDES

Probability density functions (PDF)

- PDF of average velocity
 shows sweeps and ejections
 - Seen in near wall turbulence
 - Isolates signal from the noise
- PDF of molecular velocities
 show Gaussian behaviour
 - Much wider range of velocities
 - Symmetrical in x and y
 - No observable flow
- Side view of PDFs
 - Projection of x

Viscuit

Coupled Simulation Software

MD Computing

- Force Calculation
 - All pairs simulation uses local cell and neighbour lists to reduce the N² calculation to order N

• Move particles (leapfrog in time)

$$m_i \frac{dv_i}{dt} \approx m_i \frac{v_i(t + \Delta t/2) - v_i(t - \Delta t/2)}{\Delta t} = F_i$$
$$\frac{dr_i}{dt} \approx \frac{r_i(t + \Delta t) - r_i(t)}{\Delta t}$$

MD Computing – Parallel optimisations

Localisations lends itself to parallel computing using MPI

- Spatial decomposition employed as in CFD
- Halo cells (ghost molecules) are used to link adjacent regions

Halo exchange of variable amounts of data

- MPI_Send
- MPI_Probe and MPI_Recv

- Non Equilibrium Molecular Dynamics (NEMD) is the study of cases beyond thermodynamic equilibrium, with:
 - Temperature gradients
 - Flow of fluid (e.g. Couette or Poiseuille flow)
- We induce temperature gradients and flows
 - Thermostats (e.g. Nosé Hoover) $m_i \ddot{r}_i = F_i + F_i^{teth} \psi m_i c_i$
 - Remove heat from system
 - Tethered molecules
 - (An)harmonic spring to tether site
 - With sliding
 - Slide site and (optionally) molecules

$$oldsymbol{v}_i=\dot{oldsymbol{r}}_i-oldsymbol{u}$$

