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Motivation 
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● Modern engineering problems require sub-continuum models 

● Quantum mechanics is limited to very small systems 

● Even Molecular dynamics is still prohibitively expensive 

● Multi-scale coupling overcomes these limitations by linking to cheaper methods 

● Quantum mechanics ↔ Molecular dynamics (MD) (Karplus, Levitt and Warshel) 

● Multi-scale coupling has been employed since the 1970’s (Curtin 

& Miller 2003) in solid mechanics modelling (e.g. for crack tips) 

● Essential to fully capture both the complicated detail in the crack and the impact 

on the wider system 

● Continuum ↔  Molecular mechanics (MM) ↔ Quantum mechanics (QM)  

● Classical coupling for fluids is less mature 

● Computational fluid dynamics (CFD) ↔  Molecular dynamics (MD)               

(O’Connell & Thompson 1995, Flekkøy et al 2000, Nie, Chen, E & Robbins 2004, 

Delgado-Buscalioni & Coveney, 2004) 

● Important for e.g. flow over carbon allotropes, biological systems, electronics, 

chemical reactions and combustion 
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Motivation 

QM 
Region 

● Long term goal is to seamlessly link various scales of modelling 

● Fine/coarse graining as required based on the problem of interest 

● Dynamic resource allocation and load balancing on multi-core architectures 

 

 

 

 

 

 

 

 



6 

Motivation 

QM 
Region 

● Long term goal is to seamlessly link various scales of modelling 

● Fine/coarse graining as required based on the problem of interest 

● Dynamic resource allocation and load balancing on multi-core architectures 

 

 

 

 

 

 

 

 

 



7 

Motivation 

QM 
Region 

● Long term goal is to seamlessly link various scales of modelling 

● Fine/coarse graining as required based on the problem of interest 

● Dynamic resource allocation and load balancing on multi-core architectures 

 

 

 

 

 

 

 

 

 



8 

Motivation 

QM 
Region 

● Long term goal is to seamlessly link various scales of modelling 

● Fine/coarse graining as required based on the problem of interest 

● Dynamic resource allocation and load balancing on multi-core architectures 

 

 

 

 

 

 

● Solving similar and relevant problems to quantum mechanics 

● Relationship between the mathematical framework used to describe a 

continuous field and a discrete system (The Dirac delta function) 

● Ensuring the dynamics agree in both systems in a physically meaningful manner  

● Interfacing of computational solvers and data exchange 

● Extend the range of quantum modelling, via MD-CFD coupling 

 



● Discrete molecules in continuous space 

● Molecular position evolves continuously in time 

● Position and velocity from acceleration 

 

 

 

Discrete Models (Molecular Dynamics) 

i 
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● Acceleration obtained from forces 

● Governed by Newton’s law for an N-body system 

● Point particles with pairwise interactions only 

 



Discrete Models (Molecular Dynamics) 
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Molecular Dynamics Simulation of 

Couette Flow  



● Assumed continuous at every point in space 

● Mass Conservation 

 

 

 

● Momentum Balance (Newton’s Law) 

 

 

 

● Energy Conservation 

Continuum Field Equations 
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Direct Numerical Simulation of 

Turbulent Couette Flow 



Mathematical Formulation  

for Coupling 
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Coupling Schematic 
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CFD→MD 

Boundary 

condition 

 
MD→CFD 

Boundary 

condition 

Insertion of molecules 

Consistent 

Framework 



Irving and Kirkwood (1950) 
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● Density in the molecular system is defined 

 

 

● Time evolution from the Irving and Kirkwood procedure 

 

 

 

Irving and Kirkwood (1950) cont. 
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Mass Conservation Equation 

● Continuum mass conservation 

 

 

● Molecular Equivalent 

 

 

 

 

● Similarly for the time evolution of momentum (and beyond) 

 



● The Dirac delta selects molecules at a point  

● Infinitely high, infinitely thin peak 

● Equivalent to the continuum differential  

formulation at a point 

Selecting Functions 

● In a molecular simulation     is never exactly 

equal to   

● Other difficulties with the Dirac delta function 

● Relaxed weighting functions 

● By Hardy(1981), Hoover (2009),    

Murdoch (2010) and others 



● A finite volume with fluxes and forces acting over its surfaces 

● Mass Conservation 

 

 

 

● Momentum Balance (Newton’s Law) 

 

 

 

● Energy Conservation 

The Control Volume (CV) 

18 



19 

The Control Volume (CV) 

● Writing the molecular system in terms of control volumes 

● Mass 

 

 

 

● Momentum 

 

 

 

● Energy 



● The Control volume function is the integral of the Dirac delta 

function in 3 dimensions 

 

Control Volume Function 
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For full details, please see 

E.R. Smith, D.M. Heyes, D. Dini, T.A. Zaki, 

Phys. Rev. E 85. 056705 (2012) 

● Or in words 

 



● Taking the Derivative of the CV function 

 

 

 

 

● Vector form defines six surfaces 

 

 

 

 

 

Derivatives yields the Surface Fluxes 
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● Or in words 

 

For full details, please see 

E.R. Smith, D.M. Heyes, D. Dini, T.A. Zaki, 

Phys. Rev. E 85. 056705 (2012) 



● Molecular mass in a control volume can be defined 

 

 

● Simple mathematical operations using the control volume 

function 

 

 

 

Applying the Control Volume Function 
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● Mass, momentum and energy equations 

● Mass Conservation 

 

 

● Momentum Balance 

 

 

 

 

● Energy Conservation 

 

 Reynolds’ Transport Theorem 
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● Mass, momentum and energy equations 

● Mass Conservation 

 

 

● Momentum Balance 

 

 

 

 

● Energy Conservation 

 

 Reynolds’ Transport Theorem 

● The difference between two control volume 

functions for i and j 

 

 

● This is the IK operator for a CV 
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Testing Momentum Balance 

Accumulation Advection Forcing 

● Momentum Balance 

 

25 



The Pressure Tensor 

● Continuum Control Volume equations in terms of the pressure 

tensor 

● Molecular Control Volume equations in terms of the pressure 

tensor 



Coupling Using the Control Volume 
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Insertion of molecules 

Consistent 

Framework   

CFD→MD 

Boundary 

condition 

 
MD→CFD 

Boundary 

condition 



● We now have an equivalent description in both regions 

● Momentum or stresses inside an arbitrary control volume in both domains 

 

 

 

 

 

 

Coupling Using the Control Volume 

State Coupling : O’Connell & Thompson 

(1995), Nie, Chen, E & Robbins (2004) 

 

Flux Coupling: Flekkøy et al (2000),        

Delgado-Buscalioni & Coveney, (2004) 

 

 

 

 

 

 



MD→CFD 

Boundary 

condition 

 

Coupling Using the Control Volume 
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Insertion of molecules 

Consistent 

Framework 

 

CFD→MD 

Boundary 

condition 
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● Non-unique solution 

● Continuum field properties must specify N molecules 

● Hamilton’s principle (subject to a constraint) 

● As close as possible to the true trajectory  

● Used in the first fluids coupling scheme (O’Connell and Thompson 1995) 

 

 

 

● But now we want to apply a constraint localised using the 

control volume function  

● CV function takes care of the localisation for us 

 

 

Constrained Control Volume 
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● The Euler-Lagrange equation is applicable 

● As the constraint is semi-holonomic (Flannery 2004,2011) 

 

 

● Written in terms of canonical momentum and its time derivative 

 

 

 

● To give equations of motions 

● Applying the MD boundary condition based on Hamilton’s principle 

● Localised to a region in space (courtesy of the CV function) 

● No energy added to the system when applied correctly (i.e. with the CV function) 

Principle of least action 



 

Coupling Using the Control Volume 
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Insertion of molecules 

Consistent 

Framework 

 

CFD→MD 

Boundary 

condition 

 
MD→CFD 

Boundary 

condition 

 



Coupling Results 
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Increasing 

time 

 



Computing Developments 
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Molecular Dynamics Solver 

● New parallel molecular dynamics (MD) code 

● Fortran 90 (including ‘modern’ 2003 features and python wrappers) 

● Optimised for non-equilibrium molecular dynamics and linking to CFD 

● A range of verification tests using experimental data and 

literature benchmarks 

● Phase diagrams 

● Radial Distribution Function (related to the scattering function) 
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MD Computing – Serial optimisations 

● All pairs simulation uses local cell/neighbour lists  

● N2 calculation reduced to order N 

● Linked lists are used in order to manipulate data 

● Result in non-contiguous data access 

● Hilbert curve sorting improves cache                      

efficiency of operations 

● Improvement becomes greater on larger systems 

● Some tuning required 

● Heaviside function implemented in                                 

assembly language  

● cmplesd xmm1,xmm0      #Check input less than 0.0; true=zeros, false=ones 

● movsd   xmm0,xmm2       #Save 1.0 into xmm0 

● andpd   xmm0,xmm1        #AND 1.0 with all zeros/ones 
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MD Computing – Serial optimisations 



MD Computing – Parallel optimisations 

● Localisations lends itself to parallel computing using MPI 

● Spatial decomposition employed 

● Halo cells (ghost molecules) are used to link adjacent regions 

 

 

 

 

 

 

● Halo exchange of variable amounts of data 

● MPI_Send, MPI_Probe and MPI_Recv employed 

● CUDA implementation developed but found to be too 

inflexible to justify the speedup (especially in parallel) 

● 30x speedup reported if entire code on GPU (Anderson et al 2008) 

● Speedup negated by transfer, multi-GPU implementation challenging 
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MD Computing – Parallel optimisations 

● Strong scaling vs 1 core with 3,322,336 molecules 

● On HECToR and Imperial’s supercomputers CX1/CX2 

● Efficiency of 90% when comparing 1024 cores to 8 cores 

 



Computational Fluid Dynamics 

 Fortran finite volume (FV) Direct Numerical Simulation (DNS) 

 Highly optimised algorithm used in simulation of turbulence 

 Fully parallelised using MPI (halo cells) with good scalability in benchmark tests 

 Extensively tested and verified (Zaki & Durbin, 2005, 2006) 



CPL_LIBRARY Overview 
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 Based on the MPI module  

 Designed in collaboration with 

Numerical Algorithms Group (NAG) 

 Lightweight and efficient library to 

preserve the scaling of the two codes 

 API using pure Fortran functions, unit 

tested and inclusive of error checking 

 Framework is general  

 Exchange any arbitrary data arrays per 

continuum cell 

 Allows, in principle, the coupling of any 

continuum code to any molecular code 

 MPMD implementation enforces 

separate scope of the two solvers 

 mpiexec –n 32./md.exe : -n 16 ./cfd.exe 

16 CFD Processors 

32 MD Processors 



CPL_LIBRARY Key Routines 
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 Setup 

 CPL_create_comm – Split intra-comms and create inter-comms 

 CPL_CFD_init  / CPL_MD_init –Define mapping between domains. Every 

processor stores a copy of all mappings, communicators    

 and both solvers processor topology 

 

 

 

 

 Enquiry  

 CPL_get – Return copies of protected library internal data 

 CPL_cart_coord – Coordinate of any processor on either solver 

 CPL_COMM_rank – Rank of processor in specified communicator 

 CPL_extents – extents of cells on current processor 

 Exchange 

 CPL_send / CPL_recv – Send and receive data between 

overlapping processors on the coupling interface 

 CPL_gather / CPL_scatter – Gather/scatter operations 

implemented efficiently on dedicated communicators 

linking coupled processors 

CFD9 
MD20 MD24 

MD19 MD23 



CPL_LIBRARY Schematic 
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CPL_Library results 
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8 CFD Processors 

32 MD Processors 



CPL_Library results 



● Multi-scale coupling is essential for modern engineering 

● Implementation of molecular dynamics (and quantum mechanics) where 

essential and a continuum model to extend to engineering scales 

● Consistent framework for coupling fluid descriptions 

● Control volume (CV) function expresses continuum and discrete systems 

in an equivalent formulation (rigours backing to existing coupling) 

● Hamilton’s principle, with the CV function, provides a constraint which 

ensures the descriptions in both domains agree 

● Verified using test cases with known analytical solutions 

● Computational developments 

● Extensive serial and parallel optimisations applied to the molecular 

dynamics solver 

● CPL_library is an open source library to facilitates the exchange of data 

between two coupled codes (https://code.google.com/p/cpl-library/) 

● Verified with test cases on a range of processor topologies 

Conclusions 
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https://code.google.com/p/cpl-library/
https://code.google.com/p/cpl-library/
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Extra Material 
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Advection 

Forcing 

Testing Momentum Balance 

● Momentum Balance 
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Advection Forcing 

Testing Momentum Balance 

● Momentum Balance 
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Testing Momentum Balance 

Accumulation Advection Forcing 

● Momentum Balance 
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● The Control volume function is the integral of the Dirac delta 

function in 3 dimensions 

 

 

 

 

 

 

● Replace molecular position with             

equation for a line 

 

 

 

 

 

 

 

 

 

 

Control Volume Function (revisited) 
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For full details, please see 

E.R. Smith, D.M. Heyes, D. Dini, T.A. Zaki, Phys. Rev. E 85. 056705 (2012) 



● The Control volume function is the integral of the Dirac delta 

function in 3 dimensions 

 

 

 

 

 

 

● Length of interaction inside the CV 

 

 

 

 

Control Volume Function (revisited) 
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● Taking the Derivative of the CV function 

 

 

 

 

 

● Surface fluxes over the top and               

bottom surface 

 

 

Derivatives Yield the Surface Forces 
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● Extensive literature on the form of the molecular stress tensor 

● No unique solution Schofield, Henderson (1988) 

● Two key forms in common use – Volume Average (Lutsko, 1988) and Method of 

Planes (Todd et al 1995) 

● Link provided between these descriptions 

● Through formal manipulation of the functions 

● Exposes the relationship between the molecular stresses    

 and the evolution of momentum 

● In the limit the Dirac delta form of               

Irving and Kirkwood (1950) is obtained 

● This suggests the same limit is not  possible in    

 the molecular system 

● Arbitrary stress based on the volume of interest 

More on the Pressure Tensor 
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● Why the continuum form of Reynolds’ transport theorem has a 

partial derivative but the discrete is a full derivative 

● Eulerian mass conservation 

 

 

 

 

● Lagrangian mass conservation 

Moving reference frame 
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Continuum Analytical Couette Flow 

t= 10
57 



Unsteady Couette Flow 
● Molecular Dynamics ● Continuum Analytical 

● Simplify the momentum balance 

(Navier-Stokes) equation 

 

 

 

● Solve the 1D unsteady diffusion 

equation. 

 

 

● With Boundary Conditions 

 

● Fixed bottom wall, sliding top wall 

with both thermostatted 
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Unsteady Couette Flow 
● Molecular Dynamics 

● Discrete form of the Momentum 

balance equation 

 

 

 

 

● Simplifies for a single control volume 

 

 

● Fixed bottom wall, sliding top wall 

with both thermostatted 

● Continuum Analytical 

● Simplify the control volume 

momentum balance equation 

 

 

 

 

● Simplifies for a single control volume 

 

 

● With Boundary Conditions 
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Unsteady Couette Flow 

● Simulation setup 

● Starting Couette flow 

● Wall thermostat:  Nosé-Hoover 

● Averages are computed over 1000 

time steps and 8 realizations 
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● Use of the momentum conservation of the control volume to 

determine the drag coefficient 

 

 

 

 

 

● Drag over a Carbon Nano-tube can be determined 

Flow past a cylinder 
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