
1

Python for Beginners

By
Edward Smith and Katerina Michalickova

18th September 2017

2

Introduction

3

Why learn Python

10:15 to 12:30 Python introduction with Katerina

12:30 to 13:30 Lunch break

13:30 to 14:15 Types, floats, integers and functions

14:15 to 14:45 Strings and reading files

14:45 to 15:15 List and iterators

15:15 to 15:45 Dictionaries, Numpy arrays and classes

15:55 to 16:00 Summary and wrap up

Plan for Today

http://tinyurl.com/ichpcclass

4

Pros
• Free and open-source
• Not just for scientific

computing
• Great libraries (One of

Google's languages)
• Clear, clever and well

designed syntax
• Remote access (ssh)
• Great online

documentation
(stackoverflow!)

Cons
• No debugging GUI so

less user friendly
• Syntax is different with

some odd concepts
• No type checking can

cause problems
• Not as many scientific

toolboxes as MATLAB,
inbuilt help not as good

• Slow compared to low
level languages

Pros and Cons of Python (vs e.g. MATLAB)

5

Libraries

• Key numerical libraries: NumPy, matplotlib, SciPy, Pandas

• Graphical User Interfaces (GUI) e.g. Tkinter, wxpython, pyGTK, pyQT

• Multi-threading and parallel e.g. Subprocess, MPI

• Image and video manipulation e.g. pyCV, PIL

• Machine learning e.g. Scikit-learn, Pybrain

• Build system e.g. scons, make using os/system

• Differential equations solvers e.g. FEniCS, Firedrake

• Databasing and file storage e.g. h5py, pysqlite

• Web and networking e.g. HTTPLib2, twisted, django, flask

• Web scraping – e.g. scrapy, beautiful soup

• Any many others, e.g. PyGame, maps, audio, cryptography, etc, etc

• Wrappers/Glue for accelerated code e.g. HOOMD, PyFR (CUDA)

• It is also possible to roll your own

6

● Aeronautical Engineering – MATLAB in ”Computing” and ”Numerical
Analysis”

● Bio-Engineering – MATLAB in ”Modelling for Biology”
● Chemical Engineering – Only MATLAB taught
● Chemistry – Python taught
● Civil Engineering – MATLAB in ”Computational Methods I and II”

(some object oriented in second year)
● Computing/Electrical Engineering – low level
● Materials – MATLAB in ”Mathematics and Computing”
● Maths – Python in 2nd term (MATLAB in 1st)
● Mechical Engineering – Only MATLAB taught
● Physics – Start 1st year ”Computing Labs” with Python
● Biology – Some Python teaching
● Medicine – No programming?

Computing at Imperial

7

• Currently a full time software developer/researcher
– Civil Engineering (Prev Mech & Chem Eng at IC)
– About 8 years of programming experience
– Software Sustainability Fellow (www.software.ac.uk)
– Answer Python questions on Stackoverflow

• Why this course?
– I learnt MATLAB as undergrad in Mech Eng (also C++ and

assembly language but still mainly used excel)
– Masters project: Lattice Boltzmann solver in MATLAB. PhD:

Fortran/MPI Molecular Dynamics, MATLAB post processing
– Collaborator used Python and too much effort to maintain both
– My main incentive for the switch to Python is the long term

potential and the ability to write more sustainable code, but it took
me a year to kick the MATLAB habit

– I wish I had learnt Python sooner!

My Background

http://www.software.ac.uk/

8

● Post processing framework

– Low level data readers for a range of different data formats

– Higher level field provide standard data manipulation to
combine, average and prepare data to be plotted

● Visualiser Graphical User Interface

– Read all possible field objects in a folder

– Based on wxpython and inspired by MATLAB sliceomatic

● Batch running framework for compiled code

– Simple syntax for systematic changes to input files

– Specifiy resources for multiple jobs on desktop, CX1 or CX2

– Copies everything needed for repeatability including source
code, input files and initial state files

How I use Python in my Work

9

How I use Python in my Work

Fortran/MPI
Code

Input
File

Output
Files

GUI
OutputPost

Processing

User

10

How I use Python in my Work

GUI
Output

Batch
Running

Framework

Post
Processing

User

Average
Figure
Per Run

Fortran/MPI
Code

Input
File

Output
Files

11

How I use Python in my Work

GUI
Output

Batch
Running

Framework

Post
Processing

User

Average
Figure
Per Run

GUI
Input

Pre
Processing

Subversion/git
Checkout

Automated
Testing

Automated
Build

Fortran/MPI
Code

Input
File

Output
Files

12

Possible Future Extensions

Batch
Running

Framework

Post
Processing

User

Average
Figure
Per Run

GUI
Input

GUI
Run Info

Web
Scraping

Pre
Processing

Subversion/git
Checkout

Automated
Testing

Results
To Website

Automated
Build

Machine
Learning?

Fortran/MPI
Code

Input
File

Output
Files

GUI
Output

13

Who you are

14

Your Operating System

15

Your Programming Experience

16

Your Language Background

MATLAB

C++

Java

Fortran

R

Fortran

Other

None

5 100 15

17

Python VS MATLAB (and R?)

18

#python

from numpy import *

from matplotlib.pyplot import *

x = linspace(0,2*pi,100)

y = sin(x)

z = cos(x)

plot(x,y,'-r')

plot(x,z,'-b')

show()

%MATLAB

clear all

close all

x = linspace(0,2*pi,100);

y = sin(x);

z = cos(x);

plot(x,y,'-r');

hold all

plot(x,z,'-b')

An Example vs MATLAB

19

Some of your aims for the course

● I would like to know how to extract data from output files on a
programme .. plot graphs and perform more calculations ... interface
python … automate the simulations I am performing.

● Currently i use a python program to run some custom made lab
machinery, I would like to learn the basics of python and programming
so that I can start learning to write/modify my own programs.

● Importing data of various kinds and carrying out basic
analysis/visualisation Writing scripts for automating some tasks i.e.
converting between file formats etc

● Programming principles in Python. I am especially interested in
applications in data analysis.

● 1. How other people use Python for data science. 2. What other existing
online tools can help with research. 3. Best practice.

● Better understanding on the key uses, capabilities, and applications of
python.

20

Some of your aims for the course

21

Python for Beginners

By
Edward Smith

18th September 2017

22

13:30 to 14:15 Types, floats, integers and functions

14:15 to 14:45 Strings and reading files

14:45 to 15:15 List and iterators

15:15 to 15:45 Dictionaries, Numpy arrays and classes

15:55 to 16:00 Summary and wrap up

Plan for Today

23

● An introduction to the unique features of programming
in Python

● Structured around types in Python

– Duck-typing and functional interface

– String manipulations in Python and reading files

– Lists and iterators (loops)

– Dictionaries and Classes
● Minimal discussion of plotting and data analysis

– Covered in detail tomorrow

Overview

24

My aims for the course

● A focus on the strange or unique features of Python
as well as common sources of mistakes or
confusion

● Help with the initial frustration of learning a new
language

● Prevent subtle or undetected errors in later code

● Make sure the course is still useful to the wide
range of background experiences

25

The Zen of Python, by Tim Peters (import this)

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
….

26

● Python is the language – various ways of parsing it

– Open python from start menu

– Run a script with python script.py from terminal (Linux/Mac) or
python.exe script.py from Windows shell or cmd prompt

– ipython – slightly more interactive version of python

– Python Jupyter notebooks – Web browser hosted Python session
either locally on your computer or website (e.g. Azure)

– The pythoneverywhere website – creates a Python terminal

● Common features

– Python code will work the same on all platforms

– May be issues with plots backends and packages

Running Python

27

● Show how to use the command prompt to quickly learn Python

● Introduce a range of data types (Note everything is an object)

a = 3.141592653589 # Float

i = 3 # Integer

s = "some string" # String

l = [1,2,3] # List, note square brackets tuple if ()

d = {”red”:4, ”blue”:5} # Dictonary

x = np.array([1,2,3]) # Numpy array

● Show how to use them in other constructs including conditionals (if
statements) iterators (for loops) and functions (def name)

● Introduce external libraries numpy and matplotlib for scientific
computing

Summary of Today

28

Floats, Integers
and Functions

12:30pm

29

● Use the python command prompt as a calculator

3.141592653589*3.0 Out: 9.424777961

Key Concepts - Types

30

● Use the python command prompt as a calculator

3.141592653589*3.0 Out: 9.424777961

● Define variables as one of several types

a = 3.141592653589 # Float

i = 3 # Integer

Key Concepts - Types

Syntax here means: “Define
a to be 3.141592653589”
and “define i to be 3”

31

● Use the python command prompt as a calculator

3.141592653589*3.0 Out: 9.424777961

● Define variables as one of several types

a = 3.141592653589 # Float

i = 3 # Integer

● We can then perform the same calculations using variables

a * i Out: 9.42477796076938 # But float*integer

Key Concepts - Types

32

● Use the python command prompt as a calculator

3.141592653589*3.0 Out: 9.424777961

● Define variables as one of several types

a = 3.141592653589 # Float

i = 3 # Integer

● We can then perform the same calculations using variables

a * i Out: 9.42477796076938 # But float*integer

2 / 3 Out: 0 # WATCH OUT FOR int/int

2.0/3.0 Out: 0.6666666666666 # Use floats for division

2/float(3) Out: 0.6666666666666 # Explicit conversion

histogram_entry = int(value/binsize) # Integer rounds up/down

Key Concepts - Types

33

● The behaviour is not consistent between Python 2 and 3

2 / 3 Out: 0 # Python 2.7

2 / 3 Out: 0.6666666666666 # Python 3.x

● What is Python 3?

– Released in 2008 as Guido van Rossum (”creator” of the Python
language) wanted to clean up Python 2.x

– In practice some minor syntactic changes (print is a function),
remove sources of errors and better handling of unicode,

– Historically major packages (e.g. NumPy, matplotlib) not available
on 3, default 2 on systems and lots of packages ported back to 2

– Python 3 is the future of the language so best version to use

– 2to3 tool provides automatic conversion

Python 2 vs Python 3

34

● Check type with

type(a) Out: float

type(i) Out: int

● type(), float() and int() are all examples of functions, i.e.

– take some input,

– perform some operation

– return an output

Key Concepts - Functions

f(x) = x2Input:
x = 5.0

Output:
25.0

35

● Check type with

type(a) Out: float

type(i) Out: int

● type(), float() and int() are all examples of functions, i.e.

– take some input,

– perform some operation

– return an output

def square(input):

 """Function to calculate the

 square of a number"""

 output = input*input

 return output

Key Concepts - Functions

f(x) = x2Input:
x = 5.0

Output:
25.0

#Now we can use this
square(5.0) Out: 25.0

Note: indent
whitespace

instead of end

36

#Define Function

def square(input):

 "calculate square"

 output = input*input

 return output

Key Concepts – Function Syntax

Comment

Tell Python you
are defining a
function

Function name

Name of input
variable to the

function

Level of indent
determines what is
inside the function
definition. Variables
defined (scope)
exists only inside
function. Ideally 4
spaces and avoid
tabs. See PEP 8

Operation
on input
variable

Value to return from function

#We call the function like this
square(a) Out: 25.0

#Define a variable
a = 5.0

Document function here
"text" for one line or
""" multi-line verbose

and descriptive text """

37

● Note that the input and ouput type are not specified

def square(input):

 "calculate square"

 output = input*input

 return output

#Now we can use this

square(5.0) Out: 25.0

square(5) Out: 25

Key Concepts - Functions

f(x) = x2Input:
x = 5.0

Output:
25.0

38

● Note that the input and ouput type are not specified

def square(input):

 "calculate square"

 output = input*input

 return output

#Now we can use this

square(5.0) Out: 25.0

square(5) Out: 25

● Python allows "duck typing":

– "If it looks like a duck and quacks like a duck, it's a duck"

– Both useful and a possible source of error

– TypeError: unsupported operand type(s)

Key Concepts - Functions

f(x) = x2

2

39

● take some inputs
● perform some operation
● return outputs

Examples of Functions

f(a, b, …, z)Input Output

def divide(a, b):

 output = a/b

 return output

def line(m, x, c=3):

 y = m*x + c

 return y

def quadratic(a, b, c):

 "Solve: y = ax2 + bx + c"

 D= b**2 + 4*a*c

 sol1 = (-b + D**0.5)/(2*a)

 sol2 = (-b - D**0.5)/(2*a)

 return sol1, sol2

def get_27():
 return 27

#Call using

get_27()

def do_nothing(a, b):
 a+b

Optional
variable.

Given a value
if not

specified

def redundant(a, b):
 return b

40

● Note that the input and ouput type are not specified

#Function to divide one number by another

def divide(a, b):

 output = a/b

 return output

#Which gives us

divide(2,5) Out: 0

Key Concepts - Functions

f(x, y) = x/y 0

41

● Note that the input and ouput type are not specified

#Function to divide one number by another

def divide(a, b):

 output = a/b

 return output

#Which gives us

divide(2,5) Out: 0

#Maybe more sensible to define?

def divide(a, b):

 output = float(a)/float(b)

 return output

divide(2,5) Out: 0.4

Key Concepts - Functions

f(x, y) = x/y

You can look at function
information with:

help(square) in python
In ipython, also square? Or to

see the code: square??

42

● We can write statements to test logic

#For example

a = 4.5

i = 5

print(type(a) is int) # Return False

print(a < i) # Return True

#These can be used in branching conditional (if) statement

if (a < i):

 print("a is less than i")

else:

 print("i is less than a")

Logical Tests

43

● Allow logical tests

#Example of an if statement

if a > b:

 print(a)

else:

 print(a, b)

if type(a) is int:

 a = a + b

else:

 print("Error – a is type ", type(a))

 Conditionals

if a < b:

 out = a

elif a == b:

 c = a * b

 out = c

else:

 out = b

Logical test to
determine which
branch of the
code is run

Indent
determine
scope
4 spaces
here

44

● Note that the input and ouput type are not specified

#Add a check

def divide(a, b):

 """

 Divide a by b, a and b should be floats

 """

 if ((type(a) is int) and

 (type(b) is int)):

 raise TypeError

 else:

 return a/b

A Better Divide Function

45

● Note that the input and ouput type are not specified

#Add a check

def divide(a, b):

 """

 Divide a by b, a and b should be floats

 """

 if ((type(a) is int) and

 (type(b) is int)):

 raise TypeError

 else:

 return a/b

A Better Divide Function

● Python error handling – Better to ask
forgiveness than seek permission

try:

 c = divide(a, b)

 print(c)

except TypeError:

 print("Cannot divide a=", a, " by b=", b)

46

Key Concepts - Functions

● Lambda functions in Python

square = lambda x : x*x

● Resulting function is identical to

def square(x):

 return x*x

● Functions are first class objects, we can use them as such

def fn(x):

 return x+1

def add_one_to_fn_output(x, some_fn):

 return some_fn(x) + 1

print(add_one_to_fn_output(x, fn))

47

Scope in Python

● Variables defined in a function are ”local” to that function

def fn(x):

 xin = x + 1

 return xin

 print(xin) #Causes an error as xin local to fn

● But, functions in Python have access to the global scope

a = 3.14159

def fn(x):

 xin = x + a

 return xin

 print(fn(5.)) #will print 5+3.14159

48

Scope in Python

● Local definitions take presidence

a = 3.14159

def fn(x):

 a = 2.

 xin = x + a

 return xin

 #will print 5.+2.

 print(fn(5.))

● LEGB Local, enclosing, global, builtin

a = 3.14159

def outer(x):

 a = 3.

 def inner(x):

 xin = x + a

 return xin

 return inner(x)

 #will print 5.+3.

 print(outer(5.))

49

● Two numerical types, floats and Integers

a = 2.5251

 i = 5

● Functions allow set operations

● Conditional statement

Part 1 Summary

def divide(a, b):

 output = a/b

 return output

if a > b:
 print(a)
elif a < b

print(b)
else:
 print(a, b)

Some Functions

type(in) – get type of in

int(in), float(in) – Convert in to int, float

help(in) – Get help on in

You can look at function
information with:

help(type) in python
In ipython, also type? Or to see

the code: type??

Design to prevent potential errors

caused by Python's duck typing

and lack of type checking

50

• Chris Knight
• Isaac Sugden
• Mark Woodbridge
• Katerina Michalickova
• Edward Smith

• Ask the person next to you – there is a wide range of
programming experience in this room and things are only
obvious if you've done them before!

Tutors

51

• Introduction
1) Define a = 3.6, b = 2 and add them storing the result in c. What

are the types of a, b and c?

2) In a script, use an if statement to check if variable a is an integer

3) Write a function to add two numbers and always return a float

4) Define a function to raise a floating point number to an integer
power N (Note power operator in Python to raise a to power N
is a**N). What changes are needed for non-integer powers?

• More advanced

1) Write a function which combines both 2) and 4) above to get the
hypotenuse of a triangle from two side lenghts h2 = o2 + a2

2) What does the function here do ==========>

3) Write a recursive factorial function

Hands on session 1 – Questions

def add_fn(a, b, fn):

return fn(a) + fn(b)

52

Strings and Reading Files

1415pm

53

Define variables as one of several types

a = 3.141592653589 # Float

i = 3 # Integer

s = "some string" # String

Key Concepts - Types

54

● String manipulations

s = "some string"

t = s + " with more" Out: "some string with more"

s*3 Out: "some stringsome stringsome string"

s[3] Out: e

s[0:4] Out: some

Strings

55

● String manipulations

s = "some string"

t = s + " with more" Out: "some string with more"

s*3 Out: "some stringsome stringsome string"

s[3] Out: e

s[0:4] Out: some

s.title() Out: 'Some String'

Strings

Note object oriented use of a function here. Instead of title(s) we have
s.title(). The object s is automatically passed to the title function. A function in
this form is called a method (c.f. c++ member function)

56

● String manipulations

s = "some string"

t = s + " with more" Out: "some string with more"

s*3 Out: "some stringsome stringsome string"

s[3] Out: e

s[0:4] Out: some

s.title() Out: 'Some String'

s.capitalize() Out: "Some string"

s.find("x") Out: -1 #Not found

s.find("o") Out: 1

t = s.replace("some", "a") Out: t="a string"

● In ipython, use tab to check what functions (methods) are avaliable

Strings

57

● How do we know what methods are available?

s = "some string"

s.title() Out: 'Some String'

● In ipython, use tab to check what functions (methods) are avaliable

● Also works on Pythoneverywhere or jupyter-notebooks

● If you are using python on cx1 then you can turn on this hidden feature
as follows

import readline

import rlcompleter

readline.parse_and_bind("tab: complete")

Tab Complete

58

● String manipulations

s = "some string"

t = s + " with more" Out: "some string with more"

s*3 Out: "some stringsome stringsome string"

s[3] Out: e

s[0:4] Out: some

s.title() Out: 'Some String'

s.capitalize() Out: "Some string"

s.find("x") Out: -1 #Not found

s.find("o") Out: 1

t = s.replace("some", "a") Out: t="a string"

● In ipython, use tab to check what functions (methods) are avaliable

Strings

59

● String manipulations

s = "some string"

t = s + " with more" Out: "some string with more"

s*3 Out: "some stringsome stringsome string"

s[3] Out: e

s[0:4] Out: some

s.title() Out: 'Some String'

s.capitalize() Out: "Some string"

s.find("x") Out: -1 #Not found

s.find("o") Out: 1

t = s.replace("some", "a") Out: t="a string"

● In ipython, use tab to check what functions (methods) are avaliable

Strings

60

● String manipulations

s = "some string"

t = s + " with more" Out: "some string with more"

s*3 Out: "some stringsome stringsome string"

s[3] Out: e

s[0:4] Out: some

s.title() Out: 'Some String'

s.capitalize() Out: "Some string"

s.find("x") Out: -1 #Not found

s.find("o") Out: 1

t = s.replace("some", "a") Out: t="a string"

● In ipython, use tab to check what functions (methods) are avaliable

Strings

61

String manipulations are most useful for files

#To open a file, we use the open

with a string for the filename

f = open('log.txt')

filestr = f.read()

Files in Python

Note object oriented use of a
function (method). Instead of
read(f) we have f.read().
The object f is the thing that
reads the file.

All the contents of the file are
read in as a string.

62

● String manipulations are most useful for files

#Get data from file

fdir = "C:/dir/" + "path/to/file/"

f = open(fdir + './log.txt')

filestr = f.read()

Using Strings for Files

63

● String manipulations are most useful for files

#Get data from file

fdir = "C:/dir/" + "path/to/file/"

f = open(fdir + './log.txt')

filestr = f.read()

Using Strings for Files

Note object oriented use of a
function (method). Instead of
read(f) we have f.read().
The object f is the thing that
reads the file.

64

● String manipulations are most useful for files

#Get data from file

fdir = "C:/dir/" + "path/to/file/"

f = open(fdir + './log.txt')

filestr = f.read()

f.close() #Close to prevent memory leaks

Best Practice for files

65

● Use with statement to ensure file is closed

#Get data from file

fdir = "C:/dir/" + "path/to/file/"

with open(fdir + './log.txt') as f:

 filestr = f.read()

#File is automatically closed on leaving 'with' scope

Best Practice for files

66

● String manipulations are most useful for files

#Get data from file

fdir = "C:/dir/" + "path/to/file/"

with open(fdir + './log.txt') as f:

 filestr = f.read()

"keyword" in filestr #True if found, otherwise False

filestr.find("keyword") #Index of "keyword"

Using Strings for Files

All the contents of the file are
read in as a string. This can be
manipulated. E.g. if
filestr = "contents of the file with
some keyword=4 hidden inside"

67

● String manipulations are most useful for files

#Get data from file

fdir = "C:/dir/" + "path/to/file/"

f = open(fdir + './log.txt')

filestr = f.read()

w = "keyword"

if w in filestr:

 indx = filestr.find(w)

 #Load value at keyword is equal to

 print(int(filestr[indx+len(w)+1]))

Using Strings for Files

All the contents of the file are
read in as a string. This can be
manipulated. E.g. if
filestr = "contents of the file with
some keyword=4 hidden inside"

68

● Use with statement to ensure file is closed

#Get data from file

fdir = "C:/dir/" + "path/to/file/"

with open(fdir + './log.txt') as f:

 filestr = f.read()

#File is automatically closed on leaving 'with' scope

Reading the whole file is usually efficient but for large files may need to
work through line by line:

f.readline() #Reads to newline "\n" and increment file pointer

f.seek(0) #Return to the start of the file

● Be careful of difference in functions: readline and readlines

● In ipython, use tab to check what functions (methods) are avaliable

Best Practice for files

69

● Reading the whole file is usually efficient but for large file may need to
work through line by line:

#Get data from file

with open('./log.txt') as f:

 for line in f.readlines():

 if "keyword" in line:

 print(line)

● Here, only the current line is read each time so the entire file in never
stored in memory

Best Practice for files

70

● A generator is a function which has a persistent state, in this
case the amount of the file we have read

#Read file in chunks
CHUNK_SIZE = 100
def yield_batch_from_file(fname, chunk_size=CHUNK_SIZE):
 with open(fname) as f:
 nlines = sum(1 for l in f)
 with open(fname) as f:
 for i in xrange(0, nlines, chunk_size):
 yield filter(None, [f.readline()
 for j in xrange(chunk_size)])
def process_batch(batch):
 """Do some processing on a batch"""
 print(batch)

for batch in yield_batch_from_file('big_file'):
 process_batch(batch)

An example with Generators (from Chris Knight)

71

● Strings

s = "some string"

s[0:4] Out: some

s.title() Out: 'Some String'

u = s.replace("some", "a") Out: u="a string"

s.find("m") Out: 2 #Index of m

”string" in s Out: True

● Use in file reading both for filepath and contents

fdir = "C:/dir/" + "path/to/file/"

with open(fdir + './log.txt') as f:

 filestr = f.read()

Part 2 Summary

72

• Introduction
– Build a sentence ”s” by defining and adding the 4 strings ”is” ,”a”,

”this” and ”sentence” in the right order (note no unique way to do
these). Capitalise the first letter of each of the words. Print the first
letter of each word (last one is more involved, can be skipped).

1) Write a function to add a number and a name, e.g. "filename0"
from input 0 and "filename" (note str(i) converts an int to a string)

2) Download a text file (or create your own with notepad, must be
plain text not word). Read the contents of the file into a string

3) Write a script to find word "keyword" inside file and get the value 4
after the = sign

• More Advanced

– Write a function with name of a file, read it, remove all vowels (a,
e, i, o and u) and return a string made up of consonants

Hands on session 2 – Questions

text to copy to a file and read so
you find keyword=4 hidden inside

73

Lists and Iterators (Loops)

15:00pm

74

Define variables as one of several types

a = 3.141592653589 # Float

i = 3 # Integer

s = "some string" # String

l = [1,2,3] # List, note square brackets tuple if ()

Key Concepts - Types

75

● Lists of integers

l = [1,2,3]

l = l + [4] #Note l.append(4) is an alternative

Out: [1,2,3,4]

 Key Concepts - Lists

76

● Lists of integers

l = [1,2,3]

l.append(4) #Note l + [4] is an alternative

Out: [1,2,3,4]

● We can also insert, sort and others

l.insert(3,0)

Out: [1,2,3,0]

l.sort()

Out: [0,1,2,3]

● We can index elements of the list

print(l[1], l[3])

Out: [1, 3]

 Key Concepts - Lists

Note object oriented
use of a function
(method). Instead of
append(l) we have
l.append().
The object l is
appended to (or
sorted, etc).

77

● We can also change the values in a list using indexing or sorting

l = [3, 2, 1]

l[1] = 4

l.sort()

● If you want a 'read only' list, you can use a tuple (angular brackets)

t = (1, 2, 3)

t[1]=4 #TypeError: 'tuple' object does not support item assignment

● Read only objects are called immuntable, strings are immuntable

s = "some string"

s[1] = "a" #TypeError: 'str' object does not support item assignment

Lists, Tuples and Strings

78

● We can also change the values in a list using indexing or sorting

l = [3, 2, 1]

l[1] = 4

l.sort()

● If you want a 'read only' list, you can use a tuple (angular brackets)

t = (1, 2, 3)

t[1]=4 #TypeError: 'tuple' object does not support item assignment

● Read only objects are called immuntable, strings are also immuntable

s = "some string"

s[1] = "a" #TypeError: 'str' object does not support item assignment

l = s.split() #Convert string to a list ['some', 'string']

Lists, Tuples and Strings

79

● Lists of integers

l = [1,2,3]

l = l + [4]

● But, these don't work in the same way as matrices/arrays

l = l + 4 TypeError: can only concatenate list (not "int") to list

l * 2 Out: [1, 2, 3, 4, 1, 2, 3, 4]

l * 2.0 Out: TypeError: can't multiply sequence by non-int of type 'float'

● We can make lists of any type

m = ["another string", 3, 3.141592653589793, [5,6]]

print(m[0], m[3][0]) #Note indexing starts from zero

Out: ("another string“, 5)

 Key Concepts - Lists

80

● Iterators – loop through the contents of a list

m = ["another string", 3, 3.141592653589793, [5,6]]

for item in m:

 print(type(item), " with value ", item)

● We could use error handling to handle operations on mixed
types

for item in m:

 try:

 print("Rounding " , item, " to ", int(item))

 except ValueError:

 print(item, " cannot be rounded")

Loops or iterators

81

● Iterators – loop through the contents of a list

m = ["another string", 3, 3.141592653589793, [5,6]]

for item in m:

 print(type(item), " with value ", item)

● Slightly more cumbersome for indexing

l = [1,2,3,4]

for i in range(len(l)):

 print("element", i, " is ", l[i])

Loops or iterators

len(l) returns 4
range(4) returns
the list: [0,1,2,3]

82

● Iterators – loop through the contents of a list

m = ["another string", 3, 3.141592653589793, [5,6]]

for item in m:

 print(type(item), " with value ", item)

● Slightly more cumbersome for indexing

l = [1,2,3,4]

for i in range(len(l)):

 print("element", i, " is ", l[i])

● Enumerate is the Pythonic solution

for i, e in enumerate(l):

 print("element", i, " is ", e)

Loops or iterators

len(l) returns 4
range(4) returns
the list: [0,1,2,3]

83

● Note that the following will not change the values in l

l = [1,2,3,4]

for i in l:

 i = i + 1 #Separate scope inside the for loop

● To add one to every element we could use

for i in range(len(l)):

 l[i] = l[i] + 1

● But list comprehension is the most Pythonic way

l = [i+1 for i in l]

Loops or iterators

temp = []

for i in l:

 temp.append(i+1)

l = temp

equivalent
code

84

● Iterators – more general than loops, iterate through something instead
of just looping over a counter, for example lines in a file:

with open('file.txt') as f:

for line in f:

 print(line)

● Letters in a word

for letter in "word":

 print(letter)

Iterators are better than loops as they provide: A way to access the
elements of an object without having to know its underlying
representation. E.g. f=open(“file.txt”); f[3] would not work

Anything which contains the __iter__method is iterateable in Python

Iterators for files

85

● Lists store collections of data

l = [1, 2, 3]

m = ["another string", 3, 3.141592653589793, [5,6]]

● Used with iterators – more general than looping over numbers

for item in m:

 print(type(item), " with value ", item)

● But we can still use then in this way if needed

l = [1,2,3]

for i in range(len(l)):

 print(l[i])

Summary

86

• Introduction
1) Create a list with prime numbers 7,3,5,1,2 and sort it so they are in

asending order. Use an iterator to loop through and print the output

2) Write a loop to print 10 strings with names: "filename0", "filename1", …
"filename9" (note str(i) converts an int to a string)

3) Using l = [1,2,3], write a loop to add a number to all elements giving
[2,3,4]. Write a function to take in a list l and number N, which adds N to
all elements of l and returns the list.

• More advanced

1) Define two lists, one for odd and one for even numbers less than 10.
Combine them to form a list of all numbers in the order [1,2,3,4,5,6,7,8,9].

2) For the string s=”test” and the list l = [”t”,”e”,”s”,”t”], we see s[0] == l[0],
s[1] == l[1]. Are they equal? Can you convert the string to a list? What
about list to string?

3) Define a = [1,2,3]; b = a; b.append(4). Why does a = [1,2,3,4]? what
about if you use b = b + [4] instead of append?

Hands on session 3 – Questions

87

Dictonaries,
Numpy Arrays

and
Classes

10:20am

88

Define variables as one of several types

a = 3.141592653589 # Float

i = 3 # Integer

s = "some string" # String

l = [1,2,3] # List, note square brackets tuple if ()

d = {"red":4, "blue":5} # dictionary

Key Concepts - Types

89

● Dictonaries store data which can be looked up with a string

d = {"red":4, "blue":5} #dictionary with red and blue keys

d["green"] = 6 #Adds an entry for green

print(d)

● Instead of numerical index, use a word to access elements

 print(d["red"]) #Compare to list index with number l[3]

● Useful for building more complex data storage

e = {"colours" : ["red", "blue"], "No": [3, 6]}

Dictionaries

key Value

item item

key Value

e.items()

e.keys()

e.values()

90

● Dictonaries store data using names

e = {"colours" : ["red", "blue"], "No": [3, 6]} #dictionary

e["colours"] out: ["red", "blue"]

● Elements can also be accessed using key iterators

for key in e.keys():

 print(key, e[key])

Out: ("colours", ["red", "blue"])

 ("No", [3, 6])

● Other methods to get keys, values or items (key and value)

for key, value in e.items():

 print(key, value)

Dictionaries

91

● Could be used instead of variables, consider F=ma

– If we know F and m, so that a=F/m

Newton = {}

Newton["F"] = 2.

Newton["m"] = 0.5

Newton["a"] = Newton["F"]/Newton["m"]

Dictionaries

92

● More importantly, variables do not need to be know in advance

Dictionaries

input = {}
with open('./data.csv') as f:

 for line in f.readlines():

 key, value = line.split(",")

 input[key] = float(value)

#Iterate over unknown values

for key, value in input.items():

 print(key, value)

#Print known input value

print(input["Nx"])

Nsteps, 1000
domain_x,10.0
domain_y, 20.0
timestep, 0.5
Nx, 100
Ny, 200

93

● Dictonaries are like lists but use strings to look up data

m = ["another string", 3, 3.141592653589793, [5,6]] #List

d = {"red":4, "blue":[5,6]} #dictionary

d["green"] = 8 #Can dynamically add new items

● List get values with a number, Dictonaries with a key

print(m[2], d["blue"])

● Iterators work with dictonaries in a similar way

for key, value in e.items():

 print(key, value)

Summary

94

Define variables as one of several types

a = 3.141592653589 # Float

i = 3 # Integer

s = "some string" # String

l = [1,2,3] # List, note square brackets tuple if ()

d = {"red":4, "blue":5} # dictionary

x = np.array([1,2,3]) # Numpy array

Key Concepts - Types

95

● Numpy – The basis for all other numerical packages to allow arrays
instead of lists (implemented in c so more efficient)

import numpy as np

x = np.array([1,2,3]])

Importing Numerical and Plotting Libraries

Import module
numpy and name np

Similar to:
● c++ #include

● Fortran use
● R source()

● java import (I
think...)

● MATLAB adding
code to path

Dot means use array from
module numpy.

The numpy module is just a
big collection of Python code

where array (and many
other things) are defined.

Use tab in ipython to see what code is available (or look online)

96

What is a Module?

● Simply copy code to a new file, for example stuff.py. Any script or
Python session running in the same folder can import this,

import stuff

stuff.square(4.0)

stuff.cube(4.0)

● Module code should be functions and
classes ONLY. Scripts to test/run can be
 included using the following:

if __name__ == "__main__":

 print(square(4.0), cube(4.0))

97

● Numpy – The basis for all other numerical packages to allow arrays
instead of lists (implemented in c so more efficient)

– x = np.array([1,2,3])

– mean, std, linspace, sin, cos, pi, etc

● Matplotlib – similar plotting functionality to MATLAB

– plot, scatter, hist, bar, contourf, imagesc (imshow), etc

● Scipy

– Replaces lots of the MATLAB toolboxes with optimisation, curve
fitting, regression, etc. If it's not in numpy, probably in scipy

● Pandas

– Dataframes to organise, perform statistics and plot data

Numerical and Plotting Libraries

NOTE: Downloading/installing packages is easier with “pip” or conda

98

● Lists seem similar to matrices or arrays.They are not! That is why
you need numpy arrays

import numpy as np

m = [1,2,3,4,5,6]

x = np.array(m)

#Add one to a NumPy array increments elementwise

x = x + 1 # np.array([2, 3, 4, 5, 6, 7])

#But adding one to a list will cause a TypeError

m = m + 1

#But, conversion to numpy array if we mix types

x = x + m #np.array([2, 4, 6, 8, 10, 12])

Numpy arrays of data

99

● matplotlib – similar plotting functionality to MATLAB

import matplotlib.pyplot as plt

x = np.array([0,1,1,2,3,5,8,13])

plt.plot(x)

plt.show()

Importing Matplotlib

Use tab in ipython to see what is available (or look online)

We need the pyplot submodule of
matplotlib for most things. Dot uses

plot/show from matplotlib.pyplot

100

#python

import numpy as np

import matplotlib.pyplot as plt

x = np.linspace(0,2*np.pi,100)

y = np.sin(x)

z = np.cos(x)

plt.plot(x,y,"-r")

plt.plot(x,z,"-b")

plt.show()

%MATLAB

clear all

close all

x = linspace(0,2*pi,100);

y = sin(x);

z = cos(x);

plot(x,y,'-r');

hold all

plot(x,z,'-b')

An Example vs MATLAB

Import Plotting module
matplotlib as plt

Plotting syntax based on MATLABUse plot function from plt module

101

#python

from numpy import *

from matplotlib.pyplot import *

x = linspace(0,2*pi,100)

y = sin(x)

z = cos(x)

plot(x,y,"-r")

plot(x,z,"-b")

show()

%MATLAB

clear all

close all

x = linspace(0,2*pi,100);

y = sin(x);

z = cos(x);

plot(x,y,'-r');

hold all

plot(x,z,'-b')

An Example vs MATLAB

Import all

Better not to do this to
avoid nameclashesplot function has been imported

102

● Show how to use the command prompt to quickly learn Python

● Introduce a range of data types (Note everything is an object)

a = 3.141592653589 # Float

i = 3 # Integer

s = "some string" # String

l = [1,2,3] # List, note square brackets tuple if ()

d = {”red”:4, ”blue”:5} # dictionary

x = np.array([1,2,3]) # Numpy array

● Show how to use them in other constructs including conditionals (if
statements) iterators (for loops) and functions (def name)

● Introduce external libraries numpy and matplotlib for scientific
computing

Key Concepts - Types

103

● Show how to use the command prompt to quickly learn Python

● Introduce a range of data types (Note everything is an objectNote everything is an object)

a = 3.141592653589 # Float

i = 3 # Integer

s = "some string" # String

l = [1,2,3] # List, note square brackets tuple if ()

d = {”red”:4, ”blue”:5} # dictionary

x = np.array([1,2,3]) # Numpy array

● Show how to use them in other constructs including conditionals (if
statements) iterators (for loops) and functions (def name)

● Introduce external libraries numpy and matplotlib for scientific
computing

Key Concepts - Types

104

● Three types of programming we've used so far...

– Procedural

– Functional

– Object oriented

● Everything in Python is an object

– You can get away with procedural or functional
programming

– Worth understanding a little bit about objects

– Slightly different way of thinking

What is an Object?

105

Classes in Python

● A person class could include name, age and method say their name

class Person():

 def __init__(self, name, age):

 self.name = name

 self.age = age

 def say_name(self):

 print("Hello, I'm "

 + self.name)

Python provides the
following syntax for a
constructor, a function
which MUST be called
when creating an
instance of a class

106

Classes in Python

● A person class could include name, age and method say their name

class Person():

 def __init__(self, name, age):

 self.name = name

 self.age = age

 def say_name(self):

 print("Hello, I'm "

 + self.name)

bob = Person('Bob Jones', 24)

jane = Person('Jane Bones', 32)

bob.say_name()

jane.say_name()

Python provides the
following syntax for a
constructor, a function
which MUST be called
when creating an
instance of a class
Called automatically
when we instantiate

107

● String is an object with associated methods

s = "some string"

s.title() Out: 'Some String'

s.find("o") Out: 1

t = s.replace("some", "a") Out: t="a string"

● and for lists

l.append(4) #Note l + [4] is an alternative

l.sort()

● Or, in fact, anything else in Python

a = 3.5

a.as_integer_ratio() #Ouput (7, 2)

● In ipython, use tab to check what functions (methods) are avaliable

We have already seen this...

108

Classes in Python

● A person can train in a particular area and gain specialist skills

class Person():

 def __init__(self, name, age):

 self.name = name

 self.age = age

 def say_name(self):

 print("Hello, I'm "

 + self.name)

class Scientist(PersonPerson):
 def do_science(self):
 print(self.name +

 'is researching')

class Artist(PersonPerson):
 def do_art(self):
 print(self.name +

 'is painting')

109

Classes in Python

● A person can train in a particular area and gain specialist skills

class Person():

 def __init__(self, name, age):

 self.name = name

 self.age = age

 def say_name(self):

 print("Hello, I'm "

 + self.name)

bob = Artist('Bob Jones', 24)

jane = Scientist('Jane Bones', 32)

bob.say_name(); bob.do_art()

jane.say_name(); jane.do_science()

class Scientist(PersonPerson):
 def do_science(self):
 print(self.name +

 'is researching')

class Artist(PersonPerson):
 def do_art(self):
 print(self.name +

 'is painting')

110

Classes in Python

● A number class which includes methods to get square and cube

class Number():

 def __init__(self, a):

 self.a = a

 def square(self):

 return self.a**2

 def cube(self):

 return self.a**3

n = Number(4.5)

n.square() #Out: 20.25

n.cube() #Out: 91.125

Python provides the
following syntax for a
constructor, a function
which MUST be called
when creating an
instance of a class
Called automatically
when we "instantiate"

111

Classes vs Modules

● What is the difference between classes and code in a module?

class Number():

 def __init__(self, a):

 self.a = a

 def square(self):

 return self.a**2

 def cube(self):

 return self.a**3

● A module, e.g. numpy, is a collection of functions and classes you can
access using the module name followed by a dot, e.g. "numpy.stuff".

● A class is used to instantiate objects.

112

Hands-On Session 4

Introductory Questions

1) Dictionary – Create a dictionary shape_sides with keys "triangle", "square" and
"pentagon" and values 3, 4 and 5 respectivly. Iterate and print all items

2) Numpy arrays – Import the numpy module, create an numpy arrays of values
from 1 to 5 and add one to each entry.

3) Classes – Create a class called number which takes an input x in its constructor
and stores it (self.x = x). Add a method to square the (self.x) value and return

4) Create a module containing a function which adds two numbers a and b,
returning thier sum. import into a script and print output

More Advanced Questions

5) Read the input file to the right and store the results inside
a dictionary with keys ”integer”, ”float” and ”string” and
values stores with appropriate type

integer; 10
float; 1.25
string; “hello”

113

Summary

15:40pm

114

Evolutions of a Python Project

● Python session to try things, copy to a simple script and test

● Group repeated code into functions to avoid repetition:

– Reduces potential errors as less code to check

– Improves readability as clear modular parts with a clear
interface which can be tested

– Easier to maintain and less to change as design evolves

● Collect together similar functions in a module

● Group functions acting on an object into a class for that object

● Utilise inheretance to further reduce code volume

● Create a package by adding __init__.py file to folder

● Add test scripts to packages

115

Version Control

● Once you have some code, put it into a code repository

– Backup in case you lose your computer

– Access to code from home, work and anywhere else.

– Allows you to keep a clear history of code changes

– Only reasonable option when working together on a code

● Three main repositories are git, mercurial and subversion.

● Most common is git, a steep learing curve and helps the maintainer
more than the developer (in my opinion). Mercurial may be better...
Subversion is often disregarded due to centralised model.

● Range of free services for hosting, Imperial has a paid github account
https://github.com/ so you can host close source projects

https://github.com/

117

Summary

● Background and motivations for this course

– MATLAB is the main programming language taught at Imperial

– Python provides similar plotting, numerical analysis and more

● Some key concepts

– Data types, lists/arrays, conditionals, iterators and functions

– Modules for scientific computing: numpy and matplotlib

– Clean syntax, ease of use but no checking!

● Advantages of learning Python

– General programming (better both in academia and outside)

– Allows an integrated framework and can be bundled with code

– Open source libraries with tutorials and excellent help online

118

What to do next?

● Find a project

● Use Python instead of your desktop calculator

● Ideally something at work and outside

● Use search engines for help, Python is ubiquitous - often you can find
sample code and tutorials for exactly your problem

● Stackoverflow is usually the best source of explanation

● Official documentation is okay as a reference but not introductory,
look for many excellent tutorials, guides and videos

● help(function) in python. Tab, ? or ?? in ipython

● Be prepared for initial frustration!

● Worth the effort to learn

119

Other libraries

• Graphical User Interfaces (GUI) e.g. Tkinter, wxpython, pyGTK, pyQT

• Multi-threading and parallel e.g. Subprocess, mpi4py

• Image and video manipulation e.g. pyCV, PIL

• Machine learning e.g. Scikit-learn, Pybrain

• Differential equations solvers e.g. FEniCS, Firedrake

• Databasing and file storage e.g. h5py, pysqlite

• Web and networking e.g. HTTPLib2, twisted, django, flask

• Web scraping – e.g. scrapy, beautiful soup

• Any many others, e.g. PyGame, maps, audio, cryptography, etc, etc

• Wrappers/Glue for accelerated code e.g. LAMMPS, OpenFOAM,
HOOMD, PyFR (CUDA), etc

• It is also easy to create your own packages

120

● Introduction – why learn Python and review of today
● Dictonaries, Numpy arrays and classes
● More on Numpy and matplotlib
● Loading data from files
● Using Python as glue
● More advanced plotting
● A complete post-processing example
● Best practice and summary

Plan for Tomorrow

121

What to do next?

● We will continue tomorrow... If you can't join us, and we didn't cover
something you needed for your work, please ask. I will also send notes
to everyone who signed up.

● Please provide feedback on today

● Was the course useful? What could be improved?

● I believe Python should be taught at undergraduate level here at
Imperial. Please support this by filling in the questionnaire, I will
present the results at Wednesday's HPC session (from 10 – 12)

Or Link can be found here:

http://cpl-library.org/python_feedback.shtml

http://bit.ly/2yf1vka

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121

