
1

An introduction to Python for
Scientific Computation

By Edward Smith

3rd March 2017

2

Aims for today

● Motivation for using Python.

● Introduction to basic syntax (lists, iterators, etc) and
discussion of the differences to other languages.

● Scientific libraries numpy and matplotlib.

● Using python to read files (ASCII, CSV, Binary) and
plot.

● Examples of usage for scientific problems.

3

● Introduction and Basic Constructs of Python (~30mins)

● Hands on session + break (~20 min)

● Programming in Python (~15 min)

● Hands on Session + break (~20 min)

● Scientific computing and data analysis (~20 min)

● Hands on session (~15 min)

Overview

4

Pros
• Free and open-source
• Not just for scientific

computing
• Great libraries (One of

Google's languages)
• Clear, clever and well

designed syntax
• Remote access (ssh)
• Great online

documentation

Cons
• No debugging GUI so

less user friendly
• Syntax is different with

some odd concepts
• No type checking can

cause problems
• Not as many scientific

toolboxes as MATLAB,
inbuilt help not as good

• Slow compared to low
level languages

Pros and Cons of Python (vs MATLAB)

5

● Aeronautical Engineering – MATLAB in ”Computing” and ”Numerical
Analysis”

● Bio-Engineering – MATLAB in ”Modelling for Biology”
● Chemical Engineering – Only MATLAB taught
● Chemistry – Python taught
● Civil Engineering – MATLAB in ”Computational Methods I and II”

(some object oriented in second year)
● Computing/Electrical Engineering – low level
● Materials – MATLAB in ”Mathematics and Computing”
● Maths – Python in 2nd term (MATLAB in 1st)
● Mechical Engineering – Only MATLAB taught
● Physics – Start 1st year ”Computing Labs” with Python
● Biology and Medicine – No programming?

Computing at Imperial

6

• Currently a full time software developer/researcher
– Civil Engineering (Prev Mech & Chem Eng at IC)
– About 8 years of programming experience
– Software Sustainability Fellow (www.software.ac.uk)
– Answer Python questions on Stackoverflow

• Why this course?
– I learnt MATLAB as undergrad in Mech Eng (also c++ and

assembly language but still mainly used excel)
– Masters project: Lattice Boltzmann solver in MATLAB. PhD:

Fortran/MPI Molecular Dynamics, MATLAB post processing
– Collaborator used Python and too much effort to maintain both but

took me a year to kick the MATLAB habit
– My main incentive for the switch to Python is the long term

potential and the ability to write more sustainable code
– I wish I had learnt Python sooner!

My Background

http://www.software.ac.uk/

7

● Post processing framework

– Low level data readers for a range of different data formats

– Higher level field provide standard data manipulation to
combine, average and prepare data to be plotted

● Visualiser Graphical User Interface

– Tried to instantiate all possible field objects in a folder and plot

– Based on wxpython and inspired by MATLAB sliceomatic

● Batch running framework for compiled code

– Simple syntax for systematic changes to input files

– Specifiy resources for multiple jobs on desktop, CX1 or CX2

– Copies everything needed for repeatability including source
code, input files and initial state files

How I use Python in my Work

8

How I use Python in my Work

Fortran/MPI
Code

Input
File

Output
Files

GUI
OutputPost

Processing

User

9

How I use Python in my Work

GUI
Output

Batch
Running

Framework

Post
Processing

User

Average
Figure
Per Run

Fortran/MPI
Code

Input
File

Output
Files

10

How I use Python in my Work

GUI
Output

Batch
Running

Framework

Post
Processing

User

Average
Figure
Per Run

GUI
Input

Pre
Processing

Subversion/git
Checkout

Automated
Testing

Automated
Build

Fortran/MPI
Code

Input
File

Output
Files

11

Possible Future Extensions

Batch
Running

Framework

Post
Processing

User

Average
Figure
Per Run

GUI
Input

GUI
Run Info

Web
Scraping

Pre
Processing

Subversion/git
Checkout

Automated
Testing

Results
To Website

Automated
Build

Machine
Learning?

Fortran/MPI
Code

Input
File

Output
Files

GUI
Output

12

Your Programming Experience

No Experience

Novice

Intermediate

Advanced

10 200

13

Your Language Background

MATLAB

C++

Java

Fortran

R

Fortran

Other

None

10 200 30

14

Python VS MATLAB (and R?)

15

#python

import numpy as np

import matplotlib.pyplot as plt

x = np.linspace(0, 2*np.pi, 100)

y = np.sin(x)

z = np.cos(x)

plt.plot(x, y, '-r')

plt.plot(x, z, '-b')

plt.show()

%MATLAB

clear all

close all

x = linspace(0,2*pi,100);

y = sin(x);

z = cos(x);

plot(x,y,'-r');

hold all

plot(x,z,'-b')

An Example

16

Some of your aims for the course

● Learn basics of python, ability to switch away from Matlab …
● Improve my very basic knowledge of Python and understand the

advantages of coding in general
● Introduction to Python-specifics (syntax, data types?, ...) rather than

general programming concepts.
● Basic understanding of Python so that I can implement it with [PLUG IN]

to speed up post-processing of data etc.
● Quite a few scripts that I am using for analysis … are written in Python

so I would like to be able to understand better
● See what python could help me while doing research. Get the idea of

Object Oriented Programming …
● Using python for Data processing and analysis. A general feel for other

uses such as modelling.
● An understanding of a programming language that is currently in high

demand.

17

Some of your aims for the course

18

My aims for the course

● A focus on the strange or unique features of python
as well as common sources of mistakes or
confusion

● Help with the initial frustration of learning a new
language

● Prevent subtle or undetected errors in later code

● Make sure the course is still useful to the wide
range of background experiences

19

● Show how to use the command prompt to quickly learn Python

● Introduce a range of data types (Note everything is an object)

a = 3.141592653589 # Float

i = 3 # Integer

s = "some string" # String

l = [1,2,3] # List, note square brackets tuple if ()

d = {”red”:4, ”blue”:5} # Dictonary

x = np.array([1,2,3]) # Numpy array

● Show how to use them in other constructs including conditionals (if
statements) iterators (for loops) and functions (def name)

● Introduce external libraries numpy and matplotlib for scientific
computing

My aims for the course

20

● Use the python command prompt as a calculator

3.141592653589*3.0 Out: 9.424777961

Key Concepts - Types

21

● Use the python command prompt as a calculator

3.141592653589*3.0 Out: 9.424777961

● Define variables as one of several types

a = 3.141592653589 # Float

i = 3 # Integer

Key Concepts - Types

Syntax here means: “Define
a to be 3.141592653589”
and “define i to be 3”

Variables stay defined
(Their “scope”) for
duration of python
session (or script).

22

● Use the python command prompt as a calculator

3.141592653589*3.0 Out: 9.424777961

● Define variables as one of several types

a = 3.141592653589 # Float

i = 3 # Integer

● We can then perform the same calculations using variables

a * i Out: 9.42477796076938 # But float*integer

Key Concepts - Types

Variables stay defined
(Their “scope”) for
duration of python
session (or script).

23

● Use the python command prompt as a calculator

3.141592653589*3.0 Out: 9.424777961

● Define variables as one of several types

a = 3.141592653589 # Float

i = 3 # Integer

● We can then perform the same calculations using variables

a * i Out: 9.42477796076938 # But float*integer

2 / i Out: 0 # WATCH OUT FOR int/int

2./ i Out: 0.6666666666666 # Use floats for division

2/float(i) Out: 0.6666666666666 # Explicit conversion

histogram_entry = int(value/binsize) # Integer rounds up/down

Key Concepts - Types

Variables stay defined
(Their “scope”) for
duration of python
session (or script).

24

● Check type with

type(a) Out: float

type(i) Out: int

● type(), float() and int() are all examples of functions, i.e.

– take some input,

– perform some operation

– return an output

Key Concepts - Functions

f(x) = x2Input:
x = 5.0

Output:
25.0

25

● Check type with

type(a) Out: float

type(i) Out: int

● type(), float() and int() are all examples of functions, i.e.

– take some input,

– perform some operation

– return an output

def square(input):

 """Function to calculate the

 square of a number"""

 output = input*input

 return output

Key Concepts - Functions

f(x) = x2Input:
x = 5.0

Output:
25.0

#Now we can use this
square(5.0) Out: 25.0

Note: indent
whitespace

instead of end

26

#Define Function

def square(input):

 "calculate square"

 output = input*input

 return output

Key Concepts – Function Syntax

Comment

Tell Python you
are defining a
function

Function name

Name of input
variable to the

function

Level of indent
determines what is
inside the function
definition. Variables
defined (scope)
exists only inside
function. Ideally 4
spaces and avoid
tabs. See PEP 8

Operation
on input
variable

Value to return from function

#We call the function like this
square(a) Out: 25.0

#Define a variable
a = 5.0

Document function here
"text" for one line or
""" multi-line verbose

and descriptive text """

27

● Note that the input and ouput type are not specified

def square(input):

 "calculate square"

 output = input*input

 return output

#Now we can use this

square(5.0) Out: 25.0

square(5) Out: 25

Key Concepts - Functions

f(x) = x2Input:
x = 5.0

Output:
25.0

28

● Note that the input and ouput type are not specified

def square(input):

 "calculate square"

 output = input*input

 return output

#Now we can use this

square(5.0) Out: 25.0

square(5) Out: 25

● Python allows "duck typing":

– "If it looks like a duck and quacks like a duck, it's a duck"

– Both useful and a possible source of error

– TypeError: unsupported operand type(s)

Key Concepts - Functions

f(x) = x2

2

29

● take some inputs
● perform some operation
● return outputs

Examples of Functions

f(a, b, …, z)Input Output

def divide(a, b):

 output = a/b

 return output

def line(m, x, c=3):

 y = m*x + c

 return y

def quadratic(a, b, c):

"Solve: y = ax2 + bx + c"

D = b**2 + 4*a*c

sol1 = (-b + D**0.5)/(2*a)

 sol2 = (-b – D**0.5)/(2*a)

 return sol1, sol2

def get_27():
 return 27

#Call using

get_27()

def do_nothing(a, b):
 a+b

Optional
variable.

Given a value
if not

specified

def redundant(a, b):
 return b

30

● Note that the input and ouput type are not specified

#Function to divide one number by another

def divide(a, b):

 output = a/b

 return output

#Which gives us

divide(2,5) Out: 0

Key Concepts - Functions

f(x, y) = x/y 0

31

● Note that the input and ouput type are not specified

#Function to divide one number by another

def divide(a, b):

 output = a/b

 return output

#Which gives us

divide(2,5) Out: 0

#Maybe more sensible to define?

def divide(a, b):

 output = float(a)/float(b)

 return output

divide(2,5) Out: 0.4

Key Concepts - Functions

f(x, y) = x/y

You can look at function
information with:

help(square) in python
In ipython, also square? Or to

see the code: square??

32

● Allow logical tests

#Example of an if statement

if a > b:

 print(a)

else:

 print(a, b)

if type(a) is int:

 a = a + b

else:

 print("Error – a is type ", type(a))

Key Concepts - Conditionals

if a < b:

 out = a

elif a == b:

 c = a * b

 out = c

else:

 out = b

Logical test to
determine which
branch of the
code is run

Indent
determine
scope
4 spaces
here

33

● Note that the input and ouput type are not specified

#Add a check

def divide(a, b):

 if ((type(a) is int) and

 (type(b) is int)):

 raise TypeError

 else:

 return a/b

Key Concepts - Functions

34

● Note that the input and ouput type are not specified

#Add a check

def divide(a, b):

 if ((type(a) is int) and

 (type(b) is int)):

 raise TypeError

 else:

 return a/b

Key Concepts - Functions

● Python error Handling – Better to ask
forgiveness than seek permission

try:

 c = divide(a, b)

 print(c)

except TypeError:

 print("Cannot divide a=", a, " by b=", b)

35

● Two numerical types, floats and Integers

a = 2.5251

 i = 5

● Functions allow set operations

● Conditional statement

Part 1 Summary

def divide(a, b):

 output = a/b

 return output

if a > b:
 print(a)
elif a < b

print(b)
else:
 print(a, b)

Some Functions

type(in) – get type of in

int(in), float(in) – Convert in to int, float

help(in) – Get help on in

You can look at function
information with:

help(type) in python
In ipython, also type? Or to see

the code: type??

Design to prevent potential errors

caused by Python's duck typing

and lack of type checking

36

• Isaac and Edu

• Ask the person next to you – there is a wide range of
programming experience in this room and things are only
obvious if you've done them before!

Hands on session 1 – Tutors

37

• Introduction
1) Get Python (ideally ipython) working... Please help each other here.

2) Play around with basic arithmetic. Does this behave as expected? Note exceptions

3) What does this do? i=3; i = i + 1

4) Write a function to add two numbers and always return a float

5) Use an if statement to print the larger of a or b

6) Define a function to raise a floating point number to an integer power N. What
changes would you need to make to raise to non-integer powers?

• More advanced

1) Write a function which combines both 4) and 6) above to get the hypotenuse of a
triangle from two side lenghts h2 = o2 + a2

2) What does the function here do ==========>

3) Write a recursive factorial function

Hands on session 1 – Questions

def add_fn(a, b, fn):

return fn(a) + fn(b)

38

Define variables as one of several types

a = 3.141592653589 # Float

i = 3 # Integer

s = "some string" # String

Key Concepts - Types

39

● String manipulations

s = "some string"

t = s + " with more" Out: "some string with more"

s*3 Out: "some stringsome stringsome string"

s[3] Out: e

s[0:4] Out: some

Strings

40

● String manipulations

s = "some string"

t = s + " with more" Out: "some string with more"

s*3 Out: "some stringsome stringsome string"

s[3] Out: e

s[0:4] Out: some

s.title() Out: 'Some String'

s.capitalize() Out: "Some string"

s.find("x") Out: -1 #Not found

s.find("o") Out: 1

t = s.replace("some", "a") Out: t="a string"

● In ipython, use tab to check what functions (methods) are avaliable

Strings

Note object
oriented use of
a function here.
Instead of
title(s) we have
s.title().
The object s is
automatically
passed to the
title function. A
function in this
form is called a
method
(c.f. c++
member
function)

41

● Useful for opening and reading files (Saved as a string)

#Get data from file

fdir = "C:/path/to/file/"

f = open(fdir + './log')

filestr = f.read()

w = "keyword"

if w in filestr:

 indx = filestr.find(w)

 print(int(filestr[indx+len(w)+1]))

Out: 4

Strings

Note object oriented use of a
function (method). Instead of
read(f) we have f.read().
The object f is automatically
passed to the read function.

All the contents of the file are
read in as a string. This can be
manipulated. E.g. if
filestr = "contents of the file with
some keyword=4 hidden inside"

42

Define variables as one of several types

a = 3.141592653589 # Float

i = 3 # Integer

s = "some string" # String

l = [1,2,3] # List, note square brackets tuple if ()

Key Concepts - Types

43

● Lists of integers

l = [1,2,3]

l = l + [4] #Note l.append(4) is an alternative

Out: [1,2,3,4]

● We can make lists of any type

m = ["another string", 3, 3.141592653589793, [5,6]]

print(m[0], m[3][0]) #Note indexing starts from zero

Out: ("another string“, 5)

● But, these don't work in the same way as arrays

l * 2 Out: [1, 2, 3, 4, 1, 2, 3, 4]

l * 2.0 Out: TypeError: can't multiply sequence by non-int of type 'float'

 Lists

44

● Iterators – loop through the contents of a list

m = ["another string", 3, 3.141592653589793, [5,6]]

for item in m:

 print(type(item), " with value ", item)

Loops or iterators

45

● Iterators – loop through the contents of a list

m = ["another string", 3, 3.141592653589793, [5,6]]

for item in m:

 print(type(item), " with value ", item)

● Slightly more cumbersome for indexing

l = [1,2,3,4]

for i in range(4):

 print("element", i, " is ", l[i])

Loops or iterators

len(l) returns 4
range(4) returns a
list with 4: [0,1,2,3]

46

● Iterators – loop through the contents of a list

m = ["another string", 3, 3.141592653589793, [5,6]]

for item in m:

 print(type(item), " with value ", item)

● Slightly more cumbersome for indexing

l = [1,2,3,4]

for i in range(4):

 print("element", i, " is ", l[i])

● To add one to every element we could use

for i in range(len(l)):

 l[i] = l[i] + 1

Loops or iterators

len(l) returns 4
range(4) returns a
list with 4: [0,1,2,3]

47

● Iterators – loop through the contents of a list

m = ["another string", 3, 3.141592653589793, [5,6]]

for item in m:

 print(type(item), " with value ", item)

● Slightly more cumbersome for indexing

l = [1,2,3,4]

for i in range(4):

 print("element", i, " is ", l[i])

● To add one to every element we could use

for i in range(len(l)):

 l[i] = l[i] + 1

Loops or iterators

len(l) returns 4
range(4) returns a
list with 4: [0,1,2,3]

Note: will not work:
for i in l:
 i = i + 1
List comprehension
l = [i+1 for i in l]

48

Define variables as one of several types

a = 3.141592653589 # Float

i = 3 # Integer

s = "some string" # String

l = [1,2,3] # List, note square brackets tuple if ()

d = {"red":4, "blue":5} # Dictonary

Key Concepts - Types

49

● Dictonaries for more complex data storage

d = {"red":4, "blue":5} #Dictonary

d["green"] = 6 #Adds an entry

print(d)

● Instead of numerical index, use a word to access elements

 print(d["red"])

● Useful for building more complex data storage

e = {"colours" : ["red", "blue"], "No": [3, 6]}

Dictionaries

key Value

item item

key Value

e.items()

e.keys()

e.values()

50

● Dictonaries are for more complex data storage

e = {"colours" : ["red", "blue"], "No": [3, 6]} #Dictonary

e["colours"] out: ["red", "blue"]

● Elements can also be accessed using key iterators

for key in e.keys():

 print(key, e[key])

Out: ("colours", ["red", "blue"])

 ("No", [3, 6])

Dictionaries

51

● Could be used instead of variables, consider F=ma

Newton = {}

Newton["F"] = 2.

Newton["m"] = 0.5

Newton["a"] = Newton["F"]/Newton["m"]

● More importantly, variables do not need to be know in advance

Dictionaries

Newton = {}

f = open('./log')

for l in f.readlines():

 key, value = l.split()

 Newton[key] = float(value)

log file
Nsteps 1000
domain_x 10.0
domain_y 20.0
timestep 0.5
Nx 100
Ny 200

52

● Strings

s = "some string"

t = s + " with more"

● Lists and dictonaries

m = ["another string", 3, 3.141592653589793, [5,6]] #List

d = {"red":4, "blue":5} #Dictonary

● Iterators (loops)

for item in m:

 print(type(item), " with value ", item)

#Loop with numbers

for i in range(10):

 print(i)

Part 2 Summary

53

• Introduction
1) Build a sentence s by defining and adding the 4 strings ”is” ,”a”, ”this” and

”sentence” in the right order. Capitalise the first letter of each of the words. Print
the first letter of each word. (note no unique way to do these).

2) Write a loop to print 10 strings with names: "filename0", "filename1", … "filename9"
(note str(i) converts an int to a string)

3) Define two lists, one for odd and one for even numbers less than 10. Combine
them to form a list of all numbers in the order [1,2,3,4,5,6,7,8,9].

4) Using keys ”even”, ”odd” and ”combined” put lists from 3) in a single dictonary.

5) Using l = [1,2,3], write a loop to add a number to all elements giving [2,3,4]. Write a
function to take in a list l and number N, which adds N to all elements of l.

• More advanced

1) For the string s=”test” and the list l = [”t”,”e”,”s”,”t”], we see s[0] == l[0], s[1] == l[1].
Are they equal? Can you convert the string to a list? What about list to string?

2) Define a = [1,2,3]; b = a; b.append(4). Why does a = [1,2,3,4]?

what about if you use b = b + [4] instead of append?

Hands on session 2 – Questions

54

● Numpy – The basis for all other numerical packages to allow arrays
instead of lists (implemented in c so more efficient)

– x = np.array([[1,2,3],[4,5,6],[7,8,9]])

– mean, std, linspace, sin, cos, pi, etc

● Matplotlib – similar plotting functionality to MATLAB

– plot, scatter, hist, bar, contourf, imagesc (imshow), etc

● Scipy

– Replaces lots of the MATLAB toolboxes with optimisation, curve
fitting, regression, etc

● Pandas

– Dataframes to organise, perform statistics and plot data

Numerical and Plotting Libraries

NOTE: Downloading and installing packages is trivial with “pip” or conda

55

● Numpy – The basis for all other numerical packages to allow arrays
instead of lists (implemented in c so more efficient)

import numpy as np

x = np.array([[1,2,3],[4,5,6],[7,8,9]])

Importing Numerical and Plotting Libraries

Import module
numpy and name np

Similar to:
● c++ #include

● Fortran use
● R source()

● java import (I
think...)

● MATLAB adding
code to path

Dot means use array from
module numpy.

The numpy module is just a
big collection of Python code

where array (and many
other things) are defined.

Use tab in ipython to see what code is available (or look online)

56

Define variables as one of several types

a = 3.141592653589 # Float

i = 3 # Integer

s = "some string" # String

l = [1,2,3] # List, note square brackets tuple if ()

d = {"red":4, "blue":5} # Dictonary

x = np.array([1,2,3]) # Numpy array

Key Concepts - Types

57

● Lists of lists seem similar to matrices or arrays.

m = [[1,2,3],[4,5,6],[7,8,9]]

m[0][1] Out: 2

m[1][2] Out: 6

Key Concepts – Arrays of data

m =

58

● Lists of lists seem similar to matrices or arrays.They are not!

m = [[1,2,3],[4,5,6],[7,8,9]]

m[0][1] Out: 2

m[1][2] Out: 6

● Lists are dynamic, you can add values and mix datatypes

Key Concepts – Arrays of data

m =

59

● Lists of lists seem similar to matrices or arrays.They are not!

m = [[1,2,3],[4,5,6],[7,8,9]]

m[0][1] Out: 2

m[1][2] Out: 6

● Lists are dynamic, you can add values and mix datatypes

● For numerics, use Numpy arrays which are contigous memory
implemented in c (more efficient)

import numpy as np

x = np.array([[1,2,3],[4,5,6],[7,8,9]])

Key Concepts – Arrays of data

[1, 2, 3]

[4, 5, 6]

7, 8, 9]

1

1 2 3

1

4 5 6

1

7 8 9

m =

60

● Numpy – the basis for most numerical work (implemented in c so
more efficient). Should be all the same type

import numpy as np

x = np.array([[1,2,3],[4,5,6],[7,8,9]])

y = x * 2 #Array operations

x.T #Transpose array

x * y #Elementwise (eqiv to MATLAB x .* y)

np.dot(x,y) #Matrix multiply

Invert matrix using linera algebra submodule of numpy

invy = np.linalg.inv(y)

● Numpy has a wide range of functions. As it is written in c, it is often
faster to perform operations with numpy instead of loops

Key Concepts – Arrays of data

61

● Numpy arrays similar to MATLAB, Fortran, C++ std::array, R, Java?

import numpy as np

x = np.array([[1,2,3],[4,5,6],[7,8,9]])

print(x[:,0]) #Out: Array([1, 4, 7])

print(x[1,:]) #Out: Array([4, 5, 6])

for i in range(x.shape[0]):

 for j in range(x.shape[1]):

 print(x[i,j])

● Numpy allows statistical operations

x.mean() Out: 5.0 (Note np.mean(x) equivalent)

x.std() Out: 2.5819888974716112 (Also np.std(x))

np.median(x) Out: 5.0 (But x.median doesn't work!!)

np.gradient(x) Out: Numerical diff xi+1 – xi (No x.gradient either)

Key Concepts – Arrays of data

Method to get shape
returns 2 elements for a 2D
array, accessed by index

62

● matplotlib – similar plotting functionality to MATLAB

import matplotlib.pyplot as plt

plt.plot(x)

plt.show()

Importing Numerical and Plotting Libraries

Use tab in ipython to see what is available (or look online)

We need the pyplot submodule of
matplotlib for most things. Dot uses

plot/show from matplotlib.pyplot

63

#python

import numpy as np

import matplotlib.pyplot as plt

x = np.linspace(0,2*np.pi,100)

y = np.sin(x)

z = np.cos(x)

plt.plot(x,y,"-r")

plt.plot(x,z,"-b")

plt.show()

%MATLAB

clear all

close all

x = linspace(0,2*pi,100);

y = sin(x);

z = cos(x);

plot(x,y,'-r');

hold all

plot(x,z,'-b')

An Example vs MATLAB

Import Plotting module
matplotlib as plt

Plotting syntax based on MATLABUse plot function from plt module

64

#python

from numpy import *

from matplotlib.pyplot import *

x = linspace(0,2*pi,100)

y = sin(x)

z = cos(x)

plot(x,y,"-r")

plot(x,z,"-b")

show()

%MATLAB

clear all

close all

x = linspace(0,2*pi,100);

y = sin(x);

z = cos(x);

plot(x,y,'-r');

hold all

plot(x,z,'-b')

An Example vs MATLAB

Import all

Better not to do this to
avoid nameclashesplot function has been imported

65

An Example plotting a histogram

import numpy as np

import matplotlib.pyplot as plt

#10,000 Uniform random numbers

x = np.random.random(10000)

#10,000 Normally distributed random numbers

y = np.random.randn(10000)

#Plot both on a histogram with 50 bins

plt.hist(y, 50)

plt.hist(x, 50)

plt.show()

66

An Example plotting a 2D field (matrix)

import numpy as np

import matplotlib.pyplot as plt

N = 100

x = np.linspace(0,2*np.pi,N)

y = np.sin(x); z = np.cos(x)

#Create 2D field from outer product of previous 1D functions

u = np.outer(y,z) + np.random.random([N,N])

plt.contourf(u, 40, cmap=plt.cm.RdYlBu_r)

plt.colorbar()

plt.show()

Don't use Jet
colormap

67

An Example plotting a 2D field + function + loop

import numpy as np

import matplotlib.pyplot as plt

def get_field(a, N = 100):

 x = a*np.linspace(0,2*np.pi,N)

 y = np.sin(x); z = np.cos(x)

 return np.outer(y,z)

plt.ion(); plt.show() #Interactive plot

for i in np.linspace(0., 5., 200):

 u = get_field(i) #Call function with new i

 plt.contourf(u, 40, cmap=plt.cm.RdYlBu_r)

 plt.pause(0.01) #Pause to allow redraw

 plt.cla() #Clear axis for next plot

68

An Example using time series

plt.ioff()

import numpy as np

import matplotlib.pyplot as plt

N = 1000000

signal = np.cumsum(np.random.randn(N))

plt.plot(signal); plt.show()

plt.hist(signal, 100); plt.show()

Fs = np.fft.fft(signal)**2

plt.plot(Fs.real[:N/2], ".")

plt.xscale("log"); plt.yscale("log")

plt.show()

69

An Example using data from a csv file

import numpy as np

import matplotlib.pyplot as plt

#Read data from comma seperated variable file

data = np.genfromtxt("./file.csv", delimiter=',')

#Store columns as new variables x and y

x = data[:,0]

y = data[:,1]

plt.plot(x,y,"-or")

plt.show()

file.csv
x, y
1.0, 1.0
2.0, 4.0
3.0, 9.0
4.0, 16.0
5.0, 25.0
6.0, 36.0

70

An Example using data from a csv file + function

import numpy as np

import matplotlib.pyplot as plt

def read_file(filename):

 data = np.genfromtxt(filename, delimiter=',')

 x = data[:,0]; y = data[:,1]

 return x, y

for filename in ["sqr.csv", "cube.csv"]:

 x, y = read_file(filename)

 plt.plot(x, y, "-o")

plt.show()

sqr.csv
x, y
1.0, 1.0
2.0, 4.0
3.0, 9.0
4.0, 16.0
5.0, 25.0
6.0, 36.0

cube.csv
x, y
1.0, 1.0
2.0, 8.0
3.0, 27.0
4.0, 64.0
5.0, 125.0
6.0, 216.0

71

● Opening and finding keywords in file

#Find a keyword in file and read numbers to the left

with open('./log') as f:

 for l in f.readlines():

 if l.find("timestep") != -1:

 dt = float(l.strip('timestep'))

 break

● Reading binary data (see e.g. stackoverflow)

with open('./log.bin', 'rb') as f:

 filecontent = f.read()

struct.unpack("iii", filecontent) #Need to import struct

Reading from files

log file
Nsteps 1000
domain_x 10.0
domain_y 20.0
timestep 0.5
Nx 100
Ny 200

72

● Show how to use the command prompt to quickly learn Python

● Introduce a range of data types (Note everything is an object)

a = 3.141592653589 # Float

i = 3 # Integer

s = "some string" # String

l = [1,2,3] # List, note square brackets tuple if ()

d = {”red”:4, ”blue”:5} # Dictonary

x = np.array([1,2,3]) # Numpy array

● Show how to use them in other constructs including conditionals (if
statements) iterators (for loops) and functions (def name)

● Introduce external libraries numpy and matplotlib for scientific
computing

Overview

73

Other libraries

• Graphical User Interfaces (GUI) e.g. Tkinter, wxpython, pyGTK, pyQT

• Multi-threading and parallel e.g. Subprocess, MPI

• Image and video manipulation e.g. pyCV, PIL

• Machine learning e.g. Scikit-learn, Pybrain

• Build system e.g. scons, make using os/system

• Differential equations solvers e.g. FEniCS, Firedrake

• Databasing and file storage e.g. h5py, pysqlite

• Web and networking e.g. HTTPLib2, twisted, django, flask

• Web scraping – e.g. scrapy, beautiful soup

• Any many others, e.g. PyGame, maps, audio, cryptography, etc, etc

• Wrappers/Glue for accelerated code e.g. HOOMD, PyFR (CUDA)

• It is also possible to roll your own

74

Summary

● Background and motivations for this talk

– MATLAB is the main programming language taught at Imperial

– Python provides similar plotting, numerical analysis and more

● Some key concepts

– Data types, lists/arrays, conditionals, iterators and functions

– Modules for scientific computing: numpy and matplotlib

– Clean syntax, ease of use but no checking!

● Advantages of learning Python

– General programming (better both in academia and outside)

– Allows an integrated framework and can be bundled with code

– Open source libraries with tutorials and excellent help online

75

What to do next?

● Find a project

● Use Python instead of your desktop calculator

● Ideally something at work and outside

● Use search engines for help, Python is ubiquitous so often you can
find sample code and tutorials for exactly your problem

● Stackoverflow is often the best source of explanation

● Official documentation is okay as a reference but not introductory,
look for many excellent tutorials, guides and videos

● help(function) in python. Tab, ? or ?? in ipython

● Be prepared for initial frustration!

● Worth the effort to learn

76

Next Week

● Next Friday 10th March, 2017 14:15-16:15 SAF 120

● Further details of the Python language

a) More on Python data structures.

b) Use of functions and design of interfaces.

c) Introduction to classes and objects.

d) Structuring a project, importing modules and writing tests.

e) Examples of usage for scientific problems.

● Please provide feedback on the quadratics form (link on your email) to
help tailor the course

77

• Introduction
1) Import numpy and matplotlib. These may not be installed so you will need to use

conda, pip, easy_install or some other means of getting them.

2) Setup a 3 by 3 identity matrix I (ones on the diagonal, zeros off diagonal). Create a
3 by 3 array of random numbers r. Check np.dot(I,r) is as expected

3) Plot a tanh function in the range -2 p to 2 pi using linspace and matplotlib plot.

4) Create a 1D array of 10,000 normally distributed random numbers t. Plot as a time
history and zoom in to see the detail.

5) Plot a histrogram of the array t from question 4) with 50 bins.

6) Convert array t to a 2D array using t.reshape(100,100) and plot using contourf.

7) Create a comma seperated variable file (e.g. 2 columns in excel). Import into
Python using np.genfromtxt("./file.csv", delimiter=',') and plot.
Check against the plot from excel or other software.

• More Advanced/open ended
– Apply python to read some data from your research. Use numpy to perform basic

statistical tests (results as expected). Plot using matplotlib

Hands on session 3 – Questions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77

